Cadmium Numerical Data

Novel Bacillus cereus Strain, ALT1, Enhance Growth and Strengthens the Antioxidant System of Soybean under Cadmium Stress (2021)

Table 1: Growth promoting effect of Bacillus cereus ALT1 on soybean under various cadmium stress. The values with \pm show standard deviation (SD). RL: root length; SL: shoot length; FW: fresh weight; DW: dry weight. The superscript letters after the mean values in a column indicate significant differences. Each value represents the mean \pm SD (n = 3).

	RL (cm)	SL (cm)	FW (g)	DW (g)
Contro	21 ± 1.2^{b}	22.3 ± 0.6 ^b	13.3 ± 1.5 ^b	$3.54 \pm 0.01^{\text{ b}}$
Isolate ALT1	25 ± 1.1^{a}	$26.0\pm1.4~^{\rm a}$	16.9 ± 1.5^{a}	5.22 ± 0.25 ^a
0.7 mM Cd	15.2 ± 0.9 ^{cd}	14.5 ± 1.3^{d}	11.9 ± 0.8 ^b	$2.84 \pm 0.10^{\text{ d}}$
1.4 mM Cd	12.1 ± 0.7^{e}	11.1 ± 1.2^{e}	9.2 ± 0.7 ^c	$2.25 \pm 0.17^{\text{ ef}}$
2.1 mM Cd	9 ± 0.8 f	10.1 ± 1.1^{e}	7.4 ± 1.1 ^c	1.88 ± 0.40 f
0.7 mM +	17.38 ± 1.1 ^c	18.3 ± 1.0 ^c	12.5 ± 1.5 ^b	4.16 ± 0.36 ^b
ALT1				
1.4 mM +	$15 \pm 0.5^{\rm d}$	17.2 ± 1.2 ^c	12.4 ± 1.4 ^b	3.87 ± 0.11 ^c
ALT1				
2.1 mM +	14 ± 0.5 de	$13.4 \pm 0.9^{\text{ d}}$	9.5 ± 1.0 ^c	$2.56 \pm 0.11^{\text{ de}}$
ALT1				

Source: https://www.mdpi.com/2073-4395/11/2/404

Bacillus pumilus induced tolerance of Maize (Zea mays L.) against Cadmium (Cd) stress (2021)

Treatments	Bacillus pumilus inoculation	$CdSO_4 (mg kg^{-1})$
T1	-	0
T2	+	0
Т3	+	0.25
T4	+	0.50
T5	+	0.75
Тб	-	0.25
T7	—	0.50
T8	-	0.75

Table 1: Preparation of treatment applications.

Table 2: Accumulation of micro and macro nutrients by maize plants. All treatments sharing common letter are similar otherwise difer significantly at p<0.05. T1=control, T2=inoculated seed, T3=0.25 mg CdSO₄ 100 mL ⁻¹+uninoculated seed, T4=0.50 mg CdSO₄ 100 mL ⁻¹+uninoculated seed, T5=0.75 mg CdSO₄ 100 mL⁻¹+uninoculated seed, T6=0.25 mg CdSO₄ 100 mL⁻¹,+Inoculated seed, T7=0. CdSO₄ 100 mL⁻¹+Inoculated seed, T8=0.75 mg CdSO₄ 100 mL⁻¹+Inoculated seed, T8=0.75 mg CdSO₄ 100 mL⁻¹+Uninoculated seed, T8=0.75 mg CdSO₄ 100 mg Cd

Nutri	Nutrient concentration								
ents	T1	T2	T3	T4	T5	T6	T7	T8	
Cu	4.33±0.0	6.84±0.1	4.33±0.37	2.66±0.151	1.98±0.13	2.66±0.29C	2.37±0.2	2.04 ± 0.26	
(mg/g	.35C	71B	С	D	BD	D	8D	D	
)									
Mn	3.28 ± 0.0	6.40 ± 0.2	10.47 ± 0.2	3.33 ± 0.07	1.78 ± 0.07	1.62±0.18D	1.16 ± 0.0	1.62 ± 0.21	
(mg/g)	16C	6B	2A	С	BD		4D	D	
Na	1.57 ± 0.0	5.13±0.1	6.11±1.21	2.56 ± 0.19	2.27±0.17	0.90±0.04E	0.896±3.	0.49 ± 0.5	
(g/Kg)	3D	8B	A	С	С		03E	E	
K (2.62±0.1	2.72±0.1	1.44 ± 0.03	1.03 ± 0.01	0.38 ± 0.01	0.41±0.02D	0.83±0.2	0.29 ± 0.02	
mg/g)	4A	5A	В	BC	D		2CD	D	
Fe	2.89±0.2	1.65 ± 0.1	1.41 ± 0.15	0.70 ± 0.14	1.15 ± 2.26	2.04±8.23A	$0.54{\pm}1.1$	1.29 ± 0.20	
(mg/g	4A	5BC	BCD	BCD	BCD	В	9D	BCD	
)									
Ca	1.68 ± 0.1	4.53±0.1	6.81±0.13	5.26±0.020	2.49±0.13	2.36±0.19D	2.47±0.2	O6.07±0.	
(g/Kg)	2D	4B	А	В	С	CD	0C	14E	
Mg	1.18±0.0	1.36±0.1	0.75±0.13	1.11.±0.02	O.62±0.0	1.066±0.020	$0,56\pm0.0$	0.66 ± 0.54	
(g/Kg)	1AB	42A	BCD	0ABC	19CD	ABCD	135D	CD	

Source: https://www.nature.com/articles/s41598-021-96786-7

Combination of Siderophore-Producing Bacteria and *Piriformospora indica* Provides an Efficient Approach to Improve Cadmium Tolerance in Alfalfa (2021)

Table 1: Multiple PGP activities of Sinorhizobium meliloti isolates (B1 and B2) and Pseudomonas fluorescens (B3).

Bacterial	Plant growth-promoting traits							
isolates	P solubilization	Siderophore	IAA	HCN production	ACC deaminase	%		
	$(mg l^{-1})$	production	production ¹	score ²	activity	$S.E.^3$		
B1	302	-	2.5	+	+	125.6		
B2	368	+	2.7	+	+	126.4		
B3	373	+	2.9	+	+	-		

¹ Halo diameter (HD)/colony diameter (CD); ² The point given for HCN production was excluded;

³ Symbiotic efficiency = (nitrogen content in inoculated plants with rhizobium/nitrogen content in treated plants with nitrogen fertilizer) \times 100

Table 2: Effect of bacterial and fungal microorganisms with different abilities of siderophore production [B1: *S. meliloti* (*Sid-*), B2: *S. meliloti* (*Sid+*), B3:*P. fluorescens* (*Sid+*), F =*P. indica* (*Sid+*)] on nitrogen and phosphorus concentrations in the shoot of alfalfa under Cd stress. Values are the mean of three individual replicates. Mean value \pm standard deviation with different letters is significantly different (P \leq 0.05) according to Tukey's HSD test.

Cadmium				
Microbe				
	Cd0	Cd2	Cd5	Cd10
С	2.86 ± 0.04 ^{c-g}	$2.56 \pm 0.11^{\text{g-j}}$	$2.22 \pm 0.09^{\text{ j-m}}$	$2.49 \pm 0.13^{\text{ g-k}}$
B1	3.54 ± 0.20^{ab}	3.03 ± 0.11^{bc}	$3.12 \pm 0.16^{\text{ c-f}}$	$2.82\pm0.06~^{\text{c-g}}$
B2	3.57 ± 0.25 ^a	3.13 ± 0.11^{bc}	2.76 ± 0.29 ^{c-h}	2.82 ± 0.15 ^{c-g}
B3	2.97 ± 0.06 bcd	2.85 ± 0.12 ^{c-g}	$2.65 \pm 0.19^{\text{ h-l}}$	2.17 ± 0.09 ^{d-i}
F	2.88 ± 0.13 ^{c-f}	3.04 ± 0.06 bc	2.29 ± 0.04 ⁱ⁻¹	$2.26\pm0.05^{\rm ~klm}$
F + B 1	3.14 ± 0.04 bc	3.04 ± 0.01^{bc}	2.55 ± 0.15 ^{g-j}	$2.11 \pm 0.03^{\text{lm}}$
F+ B2	3.07 ± 0.04 ^{bc}	2.94 ± 0.04 ^{b-e}	$2.25 \pm 0.15^{\ jkl}$	$2.11 \pm 0.01^{\text{lm}}$
F+ B3	3.31 ± 0.03 bcd	$2.57 \pm 0.01 ^{\text{e-j}}$	2.11 ± 0.01^{lm}	1.85 ± 0.06 ^m
	Ph	osphorous (mg g ⁻¹ DV	W)	
С	2.81 ± 0.52 ^{f-i}	$2.57 \pm 0.50^{\text{ i-m}}$	1.97 ± 0.22^{opq}	1.97 ± 0.04^{opq}
B1	$3.15 \pm 0.71^{\text{de}}$	3.19 ± 0.64 ^d	2.81 ± 0.36 ^{f-j}	2.81 ± 0.41 f-j
B2	$3.10 \pm 0.09^{\text{ def}}$	$2.64 \pm 0.14^{\text{h-i}}$	$2.49 \pm 0.32^{i-m}$	$2.49 \pm 0.33^{i-m}$
B3	3.67 ± 0.20 ^c	2.78 ± 0.04 ^{f-j}	$2.48 \pm 0.32^{\text{ j-m}}$	$2.51 \pm 0.24^{\text{ j-m}}$
F	$5.59 \pm 0.31^{\ a}$	5.27 ± 0.12^{a}	3.08 ± 0.58 def	$2.94 \pm 0.29^{\text{ def}}$
F + B 1	4.53 ± 0.45 ^b	4.22 ± 0.14 ^b	$3.18 \pm 0.60^{\text{ d}}$	$3.24 \pm 0.18^{\text{ d}}$
F+ B2	$3.21 \pm 0.51^{\text{ d}}$	$3.02 \pm 0.09^{\text{ d-g}}$	2.69 ± 0.23 ^{g-1}	2.54 ± 0.43 ^{g-1}
F + B 3	2.74 ± 0.08 ^{g-k}	$2.53 \pm 0.28^{\text{ i-m}}$	2.14 ± 0.23^{nop}	$2.02 \pm 0.24^{\text{ nop}}$

Source: https://link.springer.com/article/10.1007/s00248-020-01629-z

Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil (2020)

	Table	1: Assignment	of characteris	tic absorption	bands in in	frared spectra.
--	-------	---------------	----------------	----------------	-------------	-----------------

Absorption band position/cm ⁻¹	Absorption band assignment
650-520	Stretching vibration of -OH (carbohydrates)
870	Carbonate substance
1020-970	Stretching vibration of C-O or stretching vibration of inorganic SiO (carbohydrates)
1080–1020	Asymmetric stretching vibration of C-O (phenols or alcohols)
1170–1150	Stretching vibrations of C-OH and C-O (aliphatic)
1220–1210	Asymmetric stretching vibration of C-O or deformable vibration of N-H (hydroxyl)
1250–1230	Stretching vibration of C-O or stretching vibration of SiO in organosilicon compounds (phenols)
1460–1400	Symmetric deformable vibrations of -CH ₃ and -CH ₂ , and asymmetric stretching vibration on hydroxyl group, or stretching vibration of C-OH (aliphatic)
1555-1540	Deformable vibration of -N-H (secondary amide)
1650-1600	Stretching vibration of $-C = O$, stretching vibration of $C = C$ on aromatic group or antisymmetric vibration of organic carboxylate COO- (aldehyde, ketone)
1720–1690	Stretching vibration of $-C = O$, stretching vibration of $C = O$ in hydroxyl group (hydrogen bond formed between molecules and within molecules)
2870-2850	Symmetric stretching vibrations of -CH ₃ and -CH ₂
2900	Stretching vibration of C-H (aliphatic)
2930	Asymmetric stretching vibration of -CH ₂ (aliphatic)
2950	Asymmetric stretching vibration of -CH ₃ (aliphatic)
2060-3030	Stretching vibration of -C-H (aromatic nucleus)
3500-3300	Stretching vibrations of -COOH and -OH or stretching vibration of N-H and hydrogen bond association

According to Huang (2013), etc.

Table 2: Effect of biochar and crop straw addition on the biomass and yield of peanut.

Treatments			Yield					
	Aboveground (g·plant ⁻¹)	Underground (g·plant ⁻¹)			veground Underground (g·plant ⁻¹) ant ⁻¹)		Number of effective pods	Number of seeds per plant
		Roots	Seeds	Shells	per plant			
Тск	$9.45 \pm 1.54 c$	$1.61 \pm 0.29c$	$6.26\pm0.46c$	$3.75\pm0.34b$	$15.00\pm0.58c$	$19.00 \pm 1.15c$		
T _B	$17.61 \pm 2.33a$	$4.05\pm0.09a$	$11.17 \pm 0.55a$	$5.17\pm0.32a$	$21.00\pm0.57a$	$30.67\pm0.58a$		
T _P	$14.00\pm1.38b$	$2.16\pm0.09b$	$9.91 \pm 1.62 b$	$4.62\pm1.14b$	$15.33\pm1.53b$	$21.00\pm1.53b$		
T _R	$14.97 \pm 1.25 b$	$2.37\pm0.24b$	$10.50\pm0.82b$	$4.85\pm0.77b$	$16.33\pm0.57b$	$22.00\pm1.15b$		

Treatments: TCK: control, TB: biochar addition, TP: peanut straw addition, TR: rice straw addition. All values are presented as mean \pm standard error (n = 3), different letters in the same row indicate significant differences between treatments (P < 0.05).

Source: https://www.nature.com/articles/s41598-020-65631-8

Bioremediation of cadmium-contaminated paddy soil using an autotrophic and heterotrophic mixture (2020)

Characteristics	Characteristics Soil 1		Soil 3
Soil pH	5.96 ± 0.23	5.89 ± 1.05	6.05 ± 0.27
Soil ORP	290.30 ± 21.40	322.30 ± 20.60	250.80 ± 18.10
Available N (mg kg ⁻¹)	234.67 ± 60.48	214.33 ± 54.05	223.67 ± 36.75
Available P (mg kg ⁻¹)	0.64 ± 0.35	4.25 ± 3.15	1.32 ± 1.38
Available K (mg kg ⁻¹)	108.33 ± 17.90	101.67 ± 9.24	119.67 ± 19.22
Total N (g kg ⁻¹)	2.38 ± 0.33	2.12 ± 0.31	2.28 ± 0.14
Total P (g kg ⁻¹)	0.48 ± 0.02	0.66 ± 0.18	0.54 ± 0.02
Total K (g kg⁻¹) 13.7 ± 0.20		14.7 ± 0.78	13.77 ± 0.71
OM (%) 4.66 ± 0.90		3.79 ± 0.39	4.26 ± 0.49
Total Cd (mg kg ⁻¹)	9.09 ± 0.44	10.03 ± 0.45	9.73 ± 1.62

Table 1: Physiochemical properties of experimental soils, mean \pm standard deviation (n = 3)

Table 2: Mantel test of different environmental factors and the change of microbial community structure. The r value represents the correlation between different factors, and the p value indicates the correlation is significant.

	r	р
Total factors	0.366	0.001
рН	0.447	0.001
ORP	0.163	0.006
Total Cd	0.357	0.001

Source: https://pubs.rsc.org/en/Content/ArticleLanding/2020/RA/D0RA03935G#!divAbstract

Mechanism of Remediation of Cadmium-Contaminated Soil with Low-Energy Plant Snapdragon (2020)

Table 1: Enrichment Factor (EF) and Translocation Factor (TF) in snapdragons under different cadmium concentrations.

0.60	
0.71	0.17
0.81	0.10
	0.60 0.71 0.81

Table 2: Effects of Cd on mineral nutrient accumulation in snapdragon tissues (mg/kg, DW).

				Ī					
	Zn	В	Р	Fe	Mn	Са	Cu	Мо	Mg
Root									
Control	386 ^ª	85 [°]	211 ^a	510 ^ª	168 ^ª	622 ^a	25 [°]	119 ^ª	6,593 ^ª
1.0 mg/kg	355 ^{ab}	59 ^{ab}	190 ^b	263 ^{ab}	134 ^{ab}	621 ^ª	12 ^a	110 ^b	5,197 ^b
2.5 mg/kg	560 ^b	47 ^b	152 ^b	211 ^b	115 ^b	617 ^b	11 ^a	112 ^b	3,341 [°]
<i>p</i> -value	0.021	0.03	0.009	0.041	0.004	0	0.071	0.001	0.033
Shoot									
Control	17 ^ª	58 [°]	145 ^ª	28 ^ª	32 ^ª	379 ^ª	11 ^a	39 [°]	1,341 ^ª
1.0 mg/kg	13 ^{ab}	36 ^b	129 ^b	16 ^b	20 ^{ab}	314 ^{ab}	7 ^b	27 ^b	689 ^ª
2.5 mg/kg	28 ^b	35 ^b	118 ^b	12 ^b	28 ^b	192 ^b	5 ^b	28 ^b	341 ^a
<i>p</i> -value	0.047	0.029	0.001	0.031	0.017	0.033	0.049	0.015	0.114

Different letters stand for statistical differences at $p \le 0.05$.

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158863/#!po=45.6522

Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview (2020)

Table 1: Cd concentration in wheat and soil globally.

Cd (mg/Kg) in Wheat; Average or Range	Cd (mg/Kg) in Soil; Average or Range	Soil Characteristics	Remarks	Area
0.14 (grain)	0.38	pH = 5.9 CEC (cmol/Kg) = 21.3 OM (%) = NR ** Clay (%) = 15.8	Yangmai16 *	The north of Zhejiang Province, China
0.12 (grain)	0.36	pH = 4.9 CEC (cmol/Kg) = 34.6 OM (%) = NR Clay (%) = 117.5	Yangmai16	The east of Zhejiang Province, China
3.17 (root) 1.11 (stem) 0.25 (grain)	2.06	pH = 7.5 CEC (cmol/Kg) = 7.6 OM (%) = NR Clay (%) = NR	Zhengmai7698	Henan Province, China
0.006 to 0.17 (grain)	0.09 to 1.0	pH = 6.6 CEC (cmol/Kg) = 18.2 OM (%) = 3.0 Clay (%) = NR	NR	Kunshan, China
0.247 (grain)	0.10	pH = 7.5 CEC (cmol/Kg) = NR OM (%) = NR Clay (%) = NR	-	Brandon, Manitoba, Canada
0.01 to 0.08 (grain)	0.21	pH = 5.3 CEC (cmol/Kg) = 31 OM = NR Clay (%) = NR	-	São Gotardo (MG), Brazil
0.95 (root) 0.60 (stem)	0.27	pH = 7.8 CEC (cmol/Kg) = NR OM (%) = 0.7 Clay (%) = NR	-	Khuzestan Province, Iran
0.01 to 0.02 (grain) 0.01 to 0.03 (grain)	3.2	pH = 7.6 CEC (cmol/Kg) = NR OM = 0.14 Clay (%) = 46	Rushan Falat	Qom, Iran
0.93 (grain) 0.16 (stem) 0.67 (root)	NR	pH = NR CEC (cmol/Kg) = NR OM = NR Clay (%) = NR	-	Lahore, Pakistan
0.003 to 0.03 (grain)	NR	pH = NR CEC (cmol/Kg) = NR OM = NR Clay (%) = NR	-	Sydney, Australia

* Local names; ** not reported.

Table 2: Gene families and channels involved in the Cd uptake, transport, and metabolism in wheat.

Name	Remarks
AtIRT1	A plasma membrane transporter. Involved in entrance of Cd into root.
TcZNT1	Involved in entrance of Cd to root.
OsNRAMP1	Cd-influx transporter in the plasma membrane. Involved in entrance of Cd into
	root.
OsNRAMP5	Cd-influx transporter in the plasma membrane. Involved in entrance of Cd into
	root.
AtNRAMP6	An intracellular metal transporter. Involved in entrance of Cd into root.
TaLCT1	An influx transporter in wheat. Involved in entrance of Cd into root.
YSL	A kind of oligopeptide transporter. Involved in entrance of Cd into root over
	Cd-chelates across plant cell membranes.
P _{1B} -	A group of ubiquitous membranes. Transporting Cd from root to shoot.
ATPases	
CNGC gene	Ca ²⁺ channels in root protoplast plasma membrane. Indirectly involved in
family	entrance of Cd into root. Responsible for coding of HACCs, VICCs, and
	DACCs *.
DACCs	Ca ²⁺ channels. Involved in entrance of Cd into root.
HACCs	Ca ²⁺ channels. Involved in entrance of Cd into root.
VICCs	Ca ²⁺ channels. Involved in entrance of Cd into root.

* Depolarization-activated calcium channels (DACCs), hyper polarization-activated calcium channels (HACCs) and voltage-insensitive cation channels (VICCs).

Table 3: Reported methods for decreasing the uptake of Cd by wheat plants.

Decreasing of Cd Accumulation in Root/Stem or Straw/Grains	Cd Concentration in Wheat after Treating (mg/Kg)	Method	Remarks		
48.3% (in straw) 97.8% (in grain)	0.80 (in shoot) 0.01 (in grain)	Using rice husk biochar	Mixing silicon-rich biochar with soil		
54% (in root) 50% (in shoot) 65% (in grains)	2.0 (in root) 1.1 (in shoot) 0.2 (in grain)	Using co-composted farm manure and biochar	Mixing organic amendments with soil		
69% (in root) 67% (in shoot) 62.5% (in grains)	12 (in root) 2.7 (in shoot) 0.15 (in grain)	Using rice husk biochar	Mixing biochar with soil		
55% (in root) 51% (in shoot)	1.2 (in root) 0.7 (in shoot)	Using biochar	Mixing biochar with soil under stress conditions		
57% (in grains)	0.2 (in grain)	Using biochar	Mixing biochar (5%) with soil		
97% (in straw)	>0.2 (in straw)	Using limestone + biochar	Mixing limestone + biochar with soil		
77% (in grains)	1.1–0.2 (in grain)	Using zinc oxide nanoparticles	Foliar application		
55% to 69% (in root)	1–0.6 (in root)	Using zinc	Using ZnSO ₄ in nutrient solution		
7%–24% (in root) 13%–37% (in stem) 13%–50% (in grains)	4–3 (in root) 3.8–2.2 (in stem) 0.2–0.9 (in grain)	Using zinc	Foliar application		
10%–31% (in root) 27%–52% (in shoot) 33%–70% (in grains)	2.7–2.0 (in root) 1.6–0.9 (in shoot) 0.5–0.2 (in grain)	Using zinc–lysine	Foliar application		
19%–64% (in root) 11%–53% (in shoot) 20%–82% (in grains)	12–5 (in root) 6–2 (in shoot) 1.1–0.3 (in grains)	Using silicon nanoparticles	Foliar application		
30% (in shoot)	1.2 (in shoot)	Using inorganic silicon fertilizer	Mixing the fertilizer with soil		
24% (in grains)	0.35 (in grain)	Using sodium sulfate	Mixing with soil		
40% (in root)	NR	Using bacteria	Using Ralstonia eutropha Q2-8		

* NR = Not reported.

Source: https://www.mdpi.com/2223-7747/9/4/500/htm

Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review (2020)

Table 1: Cadmium contents in primary pollution sources regarding farmland soils")									
Pollution source	mg kg ⁻¹ /	mg L ⁻¹ /ng L ⁻¹ /μg L ⁻¹ product ^ν)	mg kg⁻¹ P						
Fertilizer									
Complete fertilizer		23–29	418–527						
Single superphosphate		16–26	186–302						
Superphosphate		13–34	151–395						
Rock phosphate		7.2–47	54-303						
High-analysis fertilizer		< 0.6–5.6	15–118						
Double superphosphate		< 0.6–12	< 3.6–72						
Triple superphosphate		0.8–7.0	24–35						
Mono-ammonium phospha	te	1.8–8.1	12–37						
Di-ammonium phosphate		4.3–6.6	22–28						
Sewage Suldge		5.0-3.32	-c)						
Organic manures		0.1–11	-						
Irrigation waste water		0.05-0.35	-						
Atmospheric deposition									
Dry deposition		0.03–8							
Wet deposition		0.01–52	-						

a)Data adapted from Kidd et al. (2007), Connan et al. (2013), Jiang et al. (2014), Nookabkaew et al. (2016), and Kumarpandit et al. (2017).

b)Unit for Cd content is mg kg⁻¹ except that in irrigation waste water, dry deposition, and wet deposition which is mg L^{-1} , ng m⁻³, $\mu g L^{-1}$, respectively.

c)Not applicable.

Table 2: Summary of transporters related to Cd uptake and transport.

Transporter	Metal	Plant species	Tissue expression/subcellular localization	References
AtCAX2	Cd/Mn/Ca	Arabidopsis	Vacuolar membrane	Hirschi et al., 2000; Shigaki and Hirschi, 2006
AtCAX4	Cd/Ca	Arabidopsis	Vacuolar membrane	Cheng <i>et al.</i> , 2002
AtHMA2	Cd/Zn	Arabidopsis	Plasma membrane	Hussain et al., 2004; Verret et al., 2004
AtHMA3	Cd/Zn/Co/P b	Arabidopsis	Vacuolar membrane	Morel <i>et al.</i> , 2009
AtHMA4	Cd/Zn/Pb/C o	Arabidopsis	Plasma membrane	Verret et al., 2004; Mills et al., 2005
AtATM3	Cd/Pb	Arabidopsis	Mitochondrial membrane	Kim <i>et al.</i> , 2006
AtNRAMP6	Cd	Arabidopsis	Leaves and flowers	Cailliatte <i>et al.</i> , 2009
AtPDR8	Cd/Pb	Arabidopsis	Root hairs/epidermal cells	Kim <i>et al.</i> , 2006
OsNRAMP5	Cd/Mn	Rice	Roots/plasma membrane	Sasaki <i>et al.</i> , 2012
OsHMA2	Cd/Zn	Rice	Roots/plasma membrane	Satoh-Nagasawa et al., 2011; Takahashi et al., 2012; yamaji et al.,2013
OsHMA3	Cd	Rice	Root/Tonoplast	Ueno et al., 2010; Miyadate et al., 2011
OsIRT1	Cd/Fe	Rice	Roots	Nakanishi <i>et al.</i> , 2006
OsIRT2	Cd/Fe	Rice	Roots	Nakanishi <i>et al.</i> , 2006
OsLCT1	Cd	Rice	Leaf nodes/plasma membrane	Uraguchi et al., 2011
OsLCD	Cd	Rice	Vascular tissues in roots and phloem companion celles in leaves	Shimo et al., 2011
OsNRAMP1	Cd/Fe	Rice	Plasma membrane	Takahashi et al., 2011
OsNMP5	Cd/Mn/Fe	Rice	Plasma membrane	Ishimaru et al., 2012
OsZIP1	Cd/Zn	Rice	Roots	Ramesh <i>et al.</i> , 2003
ZNT1	Cd/Zn	Thlaspi caerulescens	Roots and shoot	Pence <i>et al.</i> , 2000

Source: https://www.sciencedirect.com/science/article/abs/pii/S1002016020600029

Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review (2020)

Country (City)	Cd (mg kg ⁻¹)	Allowable limit	Soil pH	References
		(country)		
Spain (Barakaldo)	4.5	$1 (mg kg^{-1})$	8.74	Galdames et al. 2017
Spain (Azkoitia)	0.40	$1 (mg kg^{-1})$	7.5	Galdames et al. 2017
China (Tianjin)	2.1	$\leq 0.60 \; (\mathrm{mg \; kg}^{-1})$	7.4	Wang et al. 2017
China (Yixing)	5	$\leq 0.30 \; (\text{mg kg}^{-1})$	5.36	Bian et al. 2014
China (Xinxiang)	0.88	$\leq 0.60 \; (\mathrm{mg \; kg^{-1}})$	8.3	Li et al. 2016
China (Xiangtan)	1.42	$\leq 0.30 \; (\text{mg kg}^{-1})$	5.01	Shi et al. 2019
China (Youxi)	15.44	$\leq 0.30 \; (\text{mg kg}^{-1})$	5.70	Chen et al. 2016
Belgium (Sclaigneaux)	24	$\leq 10 \; ({\rm mg \; kg}^{-1})$	6.57	Houben et al. 2013
Austria (Arnoldstein)	12.5	$\leq 10 \; ({\rm mg \; kg}^{-1})$	5.97	Karer et al. 2015
Czech Republic (Trhové	42.7	$\leq 10 \; ({\rm mg \; kg^{-1}})$	6.6	Břendová et al. 2015
Dušníky)				
Nigeria	0.00 to 1.02	$3 (\mu g g^{-1})$	5.14-	Diagboya et al. 2015
			6.73	
New Zealand	0.79	$3 (mg kg^{-1})$	6.3	Stafford et al. 2018
New Zealand	0.61	$3 (mg kg^{-1})$	5.6	Stafford et al. 2018
Pakistan (Multan)	7.35	$0.6 ({\rm mg \ kg}^{-1})$	7.23	Rehman et al. 2017
Pakistan (Multan)	3.02	$0.6 ({\rm mg \ kg}^{-1})$	7.25	Qayyum et al. 2017
Korea (Seosan)	17	$b4 (mg kg^{-1})$	6.3	Ok et al. 2011
Malaysia (Kuala	5.20	$0.80 ({\rm mg \ kg^{-1}})$	7.83	Ashrafi et al. 2015
Lumpur)				
Egypt (Gharbia)	122	$\leq 10 \;(\mathrm{mg \; kg}^{-1})$	7.89	Mahmoud and Nasser, 2016
Iran (Zanjan)	41.2	$0.80 ({\rm mg \ kg}^{-1})$	7.19	Abbaspour and Ahmad, 2011
United Kingdom	119	1.8 (mg kg ⁻¹)	6.2	Beesley and Marmiroli, 2011
(Staffordshire)				

Table 1: Some selected references of Cd contamination world-wide exceeding permissible limits.

Table 2: Biochar as an adsorbent of cadmium.

Biocha	Pyrolysi	Chemical	Instruments	Adsorbed	Efficiency	Mechanisms	References
r type	S	composition of	used	compound and		involved	
	tempera	biochar		extraction method			
	ture and						
	time						
Rice	500 °C	C 54% and N	Atomic	Cd, Pb (BCR	Acid-soluble Cd	Surface	Bashir et
straw	(2 h)	1.6%,	absorption	fraction, TCLP and	reduced by (27.5–	functional	al.
biocha		PO4–3	spectrophoto	CaCl ₂)	34.8%), TCLP	groups	2018a
r		8.02 mg g^{-1} ,	meter		extract (14.7–	(hydroxyl,	
		CO3 ⁻²			16.9%),	carboxylic,	
		10.3 mg g^{-1} ,			$CaCl_2$ (28–32%)	phenolic),	
		Ca^{2+}				adsorption	
		9.69 mg g ⁻¹ ,					
		2.32 mg g					
Sugarc	500 °C	C% 640,	AAS,	Cd, Cr	Cd concentration	Insoluble	Bashir et
ane	(2 h)	Total N	spectrophoto	(DTPA-extracted)	decreased in	mineral	al.
bagass		11.40 g kg ⁺ ,	meter		mash	formation	2018b
e		Total P			beans tissues by	through	
feedsto		16.21 g kg ⁻¹ ,			28.74	complexation	
ck		Total P			and 32% in Cd-	and	
biocha		23.92 g kg^{-1} ,			and	precipitation	
r					Cr–Cd-		
					contaminated		

					1		
					SOII		
					~		
Oil palm fibers biocha r	700 °C (4 h)	C% 86.7, O% 3.2, H% 1.8, K% 1.3,	ICP-AES, hydrogen generation- atomic fluorescence spectrometer , graphite furnace atomic absorption	Cd, As (Metals fractionation), DCB solution	Cd and As in rice grains were decreased by 93% and 61%	Biochar's liming effect leads to the raise in soil pH, which can greatly reduce the mobility and bioavailability of Cd	Qiao et al. 2018
Wheat straw biocha r	485 °C	Total N 5.9 g kg ⁻¹ , Total P 14.4 g kg ⁻¹	Atomic absorption spectrometry using a graphite furnace (GFAAS)	Cd, Pb (CaCl ₂),	Biochar addition reduced Cd by 30 and 5% and Pb by 50 and 19%	An increase in soil pH contributed to the decrease in Cd and Pb mobility	Sui et al. 2018
Chicke n manur e biocha r	550 °C	pH 7.5, Cd 1.3 mg kg ⁻¹	ICP-OES, ICP-MS	AS, Cd (1 M NH4NO3 extraction)	higher amounts of Cd are extracted by NH4NO3	Processes involved (the decline in pH, Cd desorption by NH4+ and the formation of soluble metal- complexes)	Rocco et al. 2018
Rice straw biocha r	400 °C (2 h)	Organic carbon 62.5%, Total N 1.38%, Total P 0.65%, Total K 1.18%	X-ray diffraction, FTIR, scanning electron microscopy, (atomic absorption)	Cd, Pb	76.8% and 74.2%, reduction in Cd and Pb accumulation by canola shoots	Presence of functional groups (CNH, C-C-C, Al- OH-Fe, i-O-Si, O-P-O, C-OH and CNC)	Mahmoud et al. 2018
Malay sian Palm Oil Board biocha r Rice	250 °C	pH 9.33, Total C (%) 61.87, N (%) 1.096	ICP-OES, Atomic adsorption spectrometry , ICP-OES	Cd, Pb (SRW-extractable)	Cd and Pb significantly decreased with the increasing incubation time	Oxygen- containing functional groups, which are expected to be more effective in retaining heavy metals	Fahmi et al. 2018
straw biocha r	450 °C and 550 °C	pH 10.0, C 42.3%, N 1.5%, P 0.3%, K 2.54%	Atomic absorption spectrophoto meter	Cd (AB-DTPA extractable)	Cd was lowered by 46%, 45%, and 55% in roots, shoots and grains and BC application reduced	The decreased Cd contents may be attributed to increased concentration of organic matter. While,	Abbas et al. 2018

Scot	450 °C	pH8.56,TC(%)	Atomic	Cd, Cu, Pb, Zn	bioavailable Cd in soil Increase in	abridged seed Cd may be due to plant high which can hold Cd in shoots and roots. Higher cation	Komkiene
pine and silver birch biocha r	(2 h and 45 min) 700 °C (2 h and 45 min)	96.3 pH 8.69, TC (%) 95	absorption spectrophoto meter, flame atomic absorption spectrophoto meter (FAAS), SEM		metals concentration resulted occupying available adsorption sites	exchange capacity and increase of specific surface area	and Baltrenaite , 2016
Wheat straw biocha r	450 °C	Organic Matter (g kg ⁻¹) 467.2, CEC (cmol kg ⁻¹) 21.70, Total N (g kg ⁻¹)	SEM, X-ray spectroscopy, FTIR spectra	Cd, Pb (BCR)	Exchangeable fractions of Cd and Pb were significantly decreased	Decreased content may be attributed to the dilution effect of the amendment	Cui et al. 2016
Bambo o biocha r	750 °C (3 h)	5.90 Nitrogen (g kg ⁻¹) 4.5, cation exchange capacity (cmol kg ⁻¹) 15	XRD and FTIR spectroscopy ,	Cd, Cu, Pb and Zn (CaCl ₂ and DTPA extraction), Sequential extraction	5% rice straw biochar was more effective in reducing CaCl ₂ and DTPA extractable metals	Possible mechanism (the formation of precipitates, increases in the specific adsorption of metals, increases in electrostatic interactions).	Lu et al. 2017
Peanut shell biocha r	350–500 °C	$pH(H_2O) 9.95, Total C (g kg^{-1}) 133.7, Total Cd (mg kg^{-1}) 0.123$	FAAS	Cd, Pb (sequential extraction)	Cd and Pb concentrations in rice roots were lower by 50.8 and 22.6% using PBC	Biochar enhanced soil pH, which led to the precipitation of Cd and Pb as CdCO ₃ andPb ₅ (PO ₄) ₃ O H	Xu et al. 2018
Rice straw biocha r	500 °C (3 h)	pH 9.5, total organic C 29.3 g kg ⁻¹ ,N 1.83%, P 1.43%, K 18.9%	ICP-MS	Cd (EDTA extraction, sequential extraction)	Bioavailable Cd decreased from 0.45 and $0.85mg kg-1 to0.05$ and $0.39mg kg-1$	Biochar transforms soluble Cd to stable form, especially formation of metal (hydr)oxide, carbonate	Run-Hua et al. 2017

Source: https://www.sciencedirect.com/science/article/abs/pii/S0048969719361170

Remediation of Cadmium-Polluted Soil Using Plant Growth-Promoting Rhizobacteria and Natural Zeolite (2020)

Table 1: Mass of barley plants and Cd content in the plants in the earing phase (experiment 1)

Variant	Plant weight (dry matter), g/pot	Cd content in plants, mg/kg dry mass
	Vegetative mass	
Control – NPK	2.16 ± 0.05a	Traces
Cd + NPK	2.21 ± 0.03a	7b
Cd + P. fluorescens 21 + NPK	2.14 ± 0.04a	За
	Roots	
Control – NPK	0.52 ± 0.06a	Traces
Cd + NPK	0.54 ± 0.05a	81
Cd + P. fluorescens 21+ NPK	0.62 ± 0.07b	71

Mean data on four replicates of the experiment \pm confidence interval are reported. Errors in determining the Cd content in plants did not exceed 15%. The values indicated by different letters differed at a significance level of 5%.

Table 2:	Mass	of	barley	plants	and	Cd	content	in	the	plants	in	the	full	ripeness	phase
(experime	ent 2)														

Variant	Plant we	eight (dry	matter), g	g/pot	Cd content in plants, mg/kg dry mass			
	grain	straw	roots	total	grain	straw	roots	
Control – NPK	33.6	33.4	3.7	70.7	Not detected			
Cd + NPK	25.9	29.9	3.7	59.5	2 18 143			
Cd + P. fluorescens 21 + NPK	32.4	37.3	4.4	74.0	2	2 17 88		
Cd + <i>P. putida</i> 23 + NPK	33.7	36.5	5.4	75.6	2	19	90	
Cd + zeolite + NPK	32.9	33.7	4.8	71.5	2	2 16 120		
Cd + P. fluorescens 21 + zeolite + NPK	35.3	37.4	5.6	78.3	2 15 100			
LSD ₀₅	3.0	3.7	1.5	10.0	1.0	3.0	11.1	

Table 3: Removal of Cd by barley plants in the phase of full ripeness (experiment 2)

Variant	Cd removal by plants						
	grain	straw	roots	total			
	µg/pot			mg/pot	% of added Cd		
Control – NPK	Not det.	Not det.	Tr.	Tr.	Tr.		
Cd + NPK	52	538	529	1.1	2.2		
Cd + P. fluorescens 21 + NPK	65	634	387	1.1	2.2		
Cd + <i>P. putida</i> 23 + NPK	68	694	486	1.2	2.5		

Cd + zeolite + NPK	66	539	576	1.2	2.4
Cd + <i>P. fluorescens</i> 21 + zeolite + NPK	71	561	560	1.2	2.4
LSD ₀₅	8	75	69	0.2	

Table 4: Reaction of the soil medium after barley growing

Variant	Ν	Р	К	Ca	Mg	Fe	Zn	M n	Cu
	%				mg/kg	plant	matte	r	
	Grain								
Control – NPK	1.59	0.41	0.56	0.05	0.02	66	56	22	8
Cd + NPK	1.68	0.44	0.58	0.04	0.02	85	52	18	8
Cd + P. fluorescens 21 + NPK	1.42	0.47	0.59	0.03	0.02	95	51	18	8
Cd + P. putida 23 + NPK	1.51	0.47	0.57	0.04	0.02	87	52	21	9
Cd + zeolite + NPK	1.42	0.45	0.58	0.03	0.02	10 0	53	20	8
Cd + P. fluorescens 21 + zeolite + NPK	1.50	0.50	0.58	0.04	0.02	10 1	52	18	9
	Straw								
Control – NPK	0.37	0.04	2.5	0.07	0.01	10 0	20	98	8
Cd + NPK	0.41	0.06	2.1	0.09	0.01	10 0	26	78	8
Cd + P. fluorescens 21 + NPK	0.37	0.07	2.1	0.08	0.01	11 0	32	87	8
Cd + <i>P. putida</i> 23 + NPK	0.42	0.07	2.4	0.06	0.01	11 0	51	10 8	9
Cd + zeolite + NPK	0.43	0.05	1.9	0.07	0.01	12 3	36	94	8
Cd + P. fluorescens 21 + zeolite + NPK	0.35	0.06	2.0	0.06	0.01	12 5	38	89	8
	Roots								
Control – NPK	1.30	0.17	0.19	0.32	0.05	19 00	20 3	15 1	23
Cd + NPK	0.97	0.18	0.40	0.32	0.05	17 00	24 0	11 0	33
Cd + P. fluorescens 21 + NPK	1.03	0.15	0.25	0.33	0.07	16 00	18 5	12 6	27
Cd + <i>P. putida</i> 23 + NPK	1.15	0.16	0.24	0.34	0.06	18 00	21 0	12 4	28
Cd + zeolite + NPK	1.17	0.16	0.36	0.33	0.06	16 00	23 0	10 8	27
Cd + <i>P. fluorescens</i> 21 + zeolite + NPK	1.00	0.15	0.36	0.33	0.06	18 00	25 7	12 7	29

Table 5: The contents of biophilous elements in barley plants in the phase of full ripeness (experiment 2)

Experiment no.	Phase of plant development	Variant	рН _{КСІ}
1	Earing	Control – NPK	5.13 ± 0.09a
		Cd + NPK	$5.23\pm0.07b$
		Cd + P. fluorescens 21 + NPK	$5.23\pm0.08b$
2	Full ripeness	Control – NPK	$5.31 \pm 0.07a$
		Cd + NPK	$5.47\pm0.08b$
		Cd + P. fluorescens 21 + NPK	$5.42\pm0.09b$
		Cd + <i>P. pitida</i> 23 + NPK	5.31 ± 0.06a
		Cd + zeolite + NPK	$5.27 \pm 0.05a$
		Cd + P. fluorescens 21 + zeolite + NPK	$5.32 \pm 0.05a$

The mean of four replicated. Errors in the determination of macro- and microelements for the variants did not exceed 5 and 15%, respectively.

Table	6:	Removal	of	biophilous	elements	by	barley	plants	in	the	full	ripeness	phase
(exper	ime	ent 2)											

	Ν	Р	K	Ca	Mg	Fe	Zn	Mn	Cu
Variant	Grain	l	-						_
	mg/p	ot						µg/po	ot
Control – NPK	534	138	188	17	6.7	2.2	1.9	739	269
Cd + NPK	435	114	195	10	5.2	2.2	1.4	518	207
Cd + P. fluorescens 21 + NPK	460	152	191	10	6.5	3.1	1.7	583	201
Cd + P. putida 23 + NPK	509	159	192	14	6.7	3.0	1.8	708	291
Cd + zeolite + NPK	467	148	191	10	6.5	3.2	1.7	592	263
Cd + P. fluorescens 21 + zeolite + NPK	530	177	205	14	7.0	3.6	1.8	638	318
	Entir	e plant							
	mg/p	ot							µg/pot
Control – NPK	707	157	1030	52	11.9	12.6	3.2	4.6	622
Cd + NPK	594	139	838	49	10.0	11.4	3.1	3.3	567
Cd + P. fluorescens 21 + NPK	643	185	985	55	13.3	14.4	3.7	4.3	708
Cd + P. putida 23 + NPK	724	194	1080	54	13.6	18.6	4.8	5.3	777
Cd + zeolite + NPK	668	173	848	50	12.8	15.6	4.0	4.3	663
Cd + P. fluorescens 21 + zeolite + NPK	717	208	953	54	14.0	18.2	4.6	4.7	778

The values exceeding those for the Cd-contaminated soil without application of bacteria and zeolite at the significance level of 5% are shown in bold.

Source: https://link.springer.com/article/10.1134/S1064229320060113

Potential use of king grass (Pennisetum purpureum Schumach. \times Pennisetum glaucum (L.) R.Br.) for phytoextraction of cadmium from fields (2020)

Table 1: Effects of intercropping with accumulator plants and application of their straw on the biomass of *B. chinensis* in Cd-contaminated soil.

Treatments	Roots (g/plant DW)	Shoots (g/plant DW)	Root/shoot ratio
Experiment 1	-		-
Monoculture	$0.36\pm0.01a$	$1.70\pm0.07a$	$0.21\pm0.01b$
Intercropping with S. media	$0.25\pm0.01\text{c}$	$1.23\pm0.01d$	$0.20\pm0.01b$
Intercropping with C. hirsute	$0.24\pm0.01\text{c}$	$1.06\pm0.03e$	$0.22\pm0.02a$
Intercropping with C. glomeratum	$0.29\pm0.01b$	$1.43\pm0.05b$	$0.20\pm0.01b$
Intercropping with G. aparine	$0.28\pm0.01b$	1.34 ± 0.03 c	$0.21\pm0.01b$
Experiment 2			
Control	$0.33\pm0.02a$	$1.81\pm0.01a$	$0.18\pm0.01b$
Application of S. media	$0.28\pm0.01d$	$0.92\pm0.01\text{e}$	$0.30\pm0.02a$
Application of C. hirsute	$0.31\pm0.01b$	$1.68\pm0.01b$	$0.18\pm0.01b$
Application of C. glomeratum	$0.28\pm0.01\text{c}$	$1.00\pm0.01d$	$0.28\pm0.02a$
Application of G. aparine	$0.30\pm0.01b$	$1.52\pm0.01c$	$0.20 \pm 0.01b$

Table 2: Effects of intercropping with accumulator plants and application of their straw on the water content of *B. chinensis* in Cd-contaminated soil

Treatments	Roots (%)	Shoots (%)
Experiment 1		
Monoculture	$83.16\pm0.05a$	$90.21\pm0.12b$
Intercropping with S. media	$76.76\pm0.09d$	$88.00\pm0.14c$
Intercropping with C. hirsute	$69.99\pm0.07e$	$88.12 \pm 0.16c$
Intercropping with C. glomeratum	$80.88\pm0.02b$	$90.48 \pm 0.13a$
Intercropping with G. aparine	$78.88\pm0.03\text{c}$	$89.99\pm0.17b$
Experiment 2		
Control	$79.56 \pm 0.16a$	$90.38\pm0.07a$
Application of S. media	$78.82\pm0.03b$	$87.53 \pm 0.07e$
Application of C. hirsute	$78.28\pm0.11\text{c}$	$88.34\pm0.04c$
Application of C. glomeratum	$78.93 \pm 0.20b$	$87.98 \pm 0.16d$
Application of <i>G. aparine</i>	$78.88 \pm 0.17b$	$89.21 \pm 0.12b$

Table 3: Effects of intercropping with accumulator plant and application of their straw on the photosynthetic pigment of *B. chinensis* in Cd-contaminated soil

Treatment	Chlorophyll a (mg/g)	Chlorophyll b (mg/g)	Total chlorophyll (mg/g)	Chlorophyll a/b	Carotenoid (mg/g)
Experiment 1					
Monoculture	$0.648\pm0.002a$	$0.131 \pm 0.004a$	$0.779\pm0.006a$	$4.960\pm0.036d$	$0.247\pm0.002a$
Intercropping with S. <i>media</i>	$0.499 \pm 0.009 d$	$0.083\pm0.003\text{c}$	$0.582 \pm 0.011d$	6.014±0.011a	$0.184 \pm 0.003c$
Intercropping with C. hirsute	$0.479 \pm 0.006d$	$0.091\pm0.007c$	$0.570\pm0.001d$	$5.312\pm0.040b$	$0.179\pm0.005\mathrm{c}$
Intercropping with C. glomeratum	$0.578\pm0.014b$	$0.111 \pm 0.004b$	$0.689\pm0.017b$	$5.232 \pm 0.043c$	$0.207\pm0.005b$
Intercropping with G. <i>aparine</i>	$0.544\pm0.003\text{c}$	$0.117 \pm 0.003b$	$0.661 \pm 0.006c$	$4.662 \pm 0.036e$	$0.201\pm0.002b$
Experiment 2					
Control	$0.675 \pm 0.016a$	$0.132\pm0.008a$	$0.807\pm0.008a$	$5.111\pm0.011\text{c}$	$0.246\pm0.007a$
Application of S. media	$0.426\pm0.019d$	$0.068\pm0.006\text{c}$	$0.494\pm0.012d$	$6.273\pm0.022a$	$0.163\pm0.009\texttt{c}$
Application of C. hirsute	$0.631\pm0.001b$	$0.125\pm0.007a$	$0.756\pm0.009b$	$5.044\pm0.026d$	$0.232\pm0.007a$
Application of <i>C</i> . glomeratum	$0.544 \pm 0.004c$	$0.102 \pm 0.005b$	$0.646 \pm 0.009c$	$5.344\pm0.040b$	$0.201 \pm 0.008b$
Application of <i>G</i> . <i>aparine</i>	$0.547\pm0.010\text{c}$	$0.109\pm0.002b$	$0.656\pm0.007\text{c}$	$5.030\pm0.023d$	$0.201\pm0.003b$

Table 4: Effects of intercropping with accumulator plant and application of their straw on Cd content of *B*. *chinensis* in Cd-contaminated soil.

Treatment	Roots	Shoots	Translocation	Root bioconcentration	Shoot bioconcentration
	(mg/kg)	(mg/kg)	factor (1F)	lactor (root BCF)	lactor (shoot BCF)
Experiment 1					
Monoculture	$3.54\pm0.22d$	$1.75\pm0.02c$	$0.49\pm0.03ab$	$0.51\pm0.03d$	$0.25 \pm 0.00c$
Intercropping with S. media	$3.86 \pm 0.08c$	$1.77 \pm 0.04c$	0.46 ± 0.00 bc	$0.55 \pm 0.01c$	$0.25 \pm 0.01c$
Intercropping with <i>C. hirsute</i>	$4.43\pm0.20b$	$2.24\pm0.05a$	$0.51\pm0.01a$	$0.63\pm0.03b$	$0.32\pm0.01a$
Intercropping with C. glomeratum	$4.05\pm0.07c$	$2.08\pm0.13b$	$0.51\pm0.02a$	0.58 ± 0.01 c	$0.30\pm0.02b$
Intercropping with <i>G. aparine</i>	$4.81 \pm 0.12a$	$2.29\pm0.03a$	$0.48\pm0.01~b$	$0.69 \pm 0.02a$	$0.33 \pm 0.00a$
Experiment 2					
Control	$3.74\pm0.18b$	$1.90\pm0.12b$	$0.51\pm0.01b$	$0.53\pm0.03b$	$0.27\pm0.02b$
Application of S. <i>media</i>	$3.88\pm0.09b$	$1.93\pm0.07b$	$0.50\pm0.02b$	$0.55 \pm 0.01b$	$0.28 \pm 0.01b$
Application of C. hirsute	$4.30\pm0.08a$	2.46 ± 0.07 a	$0.57 \pm 0.02a$	$0.61 \pm 0.01a$	$0.35 \pm 0.01a$
Application of C. glomeratum	$2.64 \pm 0.03 c$	$1.10 \pm 0.05 d$	$0.42 \pm 0.02c$	$0.38 \pm 0.00c$	$0.16 \pm 0.01c$
Application of G. <i>aparine</i>	$2.83 \pm 0.14c$	$1.25 \pm 0.04c$	0.44 ± 0.01 c	$0.40 \pm 0.02c$	$0.18 \pm 0.01c$

Source: https://link.springer.com/article/10.1007/s11356-020-09148-7

Cadmium-induced changes in the growth and oxidative metabolism of pea plants (2019)

Cd (mM)	Photosynthesis rate	Water use	Transpiration rate
	$(mM H_2O m^{-2} s^{-1})$	efficiency (nmol $CO_2 \text{ mM}^{-1} \text{ H}_2\text{O}$)	$(mM H_2 Om^{-2} s^{-1})$
0	12.20 a	4872 a	2.52 a
10	8.48 b	3970 b	2.14 b
20	6.46 c	3625 c	1.79 с
30	5.03 d	3052 d	1.65 d
40	4.14 e	2492 e	1.66 d
50	1.84 f	1318 f	1.42 e

Table : Effect of Cd treatment on photosynthesis, water use efficiency and transpiration of pea plants

Values are means of 12 replicates. Values followed by the same letter are not significantly different (P-0.05) as determined by Duncan's multiple range test.

The growth inhibition of pea plants was accompanied by a significant decrease in the photosynthesis rate, which was about six times reduced at the highest Cd concentration in comparison with control plants. The transpiration rate and water use efficiency were also affected by Cd treatment, undergoing a significant and progressive decrease with increasing Cd concentrations in the nutrient solution. The transpiration rate and water use efficiency were also affected by Cd treatment, undergoing a significant and water use efficiency were also affected by Cd treatment, undergoing a significant and progressive decrease with increasing Cd concentrations in the nutrient solution.

Source: http://sci-hub.tw/10.1093/jexbot/52.364.2115

Cadmium-induced changes in the growth and oxidative metabolism of pea plants (2019)

Cd (mM)	Leaves (g DW)	Roots (g DW)	Leaf area (cm ²)
0	9.95 a	5.98 ab	4340 a
10	8.69 a	6.14 ab	3861 a
20	6.98 b	6.76 a	3013 b
30	6.23 bc	6.70 a	2633 b
40	5.36 c	5.80 ab	2410 b
50	3.89 d	4.39 с	1595 с

Table: Effect of Cd treatment on growth of pea plants

Increasing concentrations of Cd in the nutrient solution produced a significant growth inhibition of pea plants, measured as dry weight (Table), the greatest adverse effect being on leaves while root growth was only significantly affected by 50 mM CdCl₂ (Table). The decrease in dry weight of leaves was parallel to a reduction in the leaf area (Table) but no visible symptoms of toxicity, except growth reduction, were observed.

Source: https://www.ncbi.nlm.nih.gov/pubmed/11604450

Effect of Cd treatment on the chlorophyll content of pea leaf extracts.(2019)

Pea plants were grown with different Cd concentrations (0–50 mM) as described in Materials and methods. Each rectangle represents the mean"SEM of three replicates. Vertical bars indicate LSD (P-0.05) as determined by the Duncan's multiple-range test.

The chlorophyll content was also affected by Cd, showing a reduction which was proportional to the Cd concentration in the nutrient solution.

Source: https://www.ncbi.nlm.nih.gov/pubmed/11604450

Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity(2019)

The influence of TB on the bio-accumulation and translocation of Cd in ramie seedlings was shown in Fig A. The application of TB increased Cd concentration in ramie roots compared with control, with the exception of the TB5000 treatments, in which the concentration of Cd de- creased significantly. Similar to what was observed in roots, TB at 100, 500 and 1000 mg kg-1 increased Cd concentration in ramie stems by 12-20%, whereas the 5000 mg kg-1 TB reduced Cd concentration by 5% relative to the control. However, no statistical difference in Cd concentration was observed in ramie leaves whether the seedlings were treated with TB or not. The TF value of Cd in ramie seedlings increased with increasing the concentration of TB (Fig.A) whereas, the sub cellular distribution of Cd in ramie seedlings was influenced by the application of TB (Fig.B).

Source: http://sci-hub.tw/https://doi.org/10.1016/j.scitotenv.2019.02.215

Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress (2018)

Table 1: Effects of various levels of Cd and salinity on growth parameters (plant height, stem diameter, number of branches per plant, root length, shoot dry weight, root dry weight) of A. nilotica in a pot experiment.

Cd and salinity levels	Plant height (cm)	Stem diameter (cm)	Branches (plant ⁻¹)	Root length (cm)	Shoot dry weight (g plant ⁻¹)	Root dry weight (g plant ⁻¹)
Control	81 § 4.04 a	1.2 § 0.04 a	16 § 0.57 a	80 § 3.0 a	37 § 2.0 a	15.7 § 0.66 a
Cd-0-NaCl- 0.5	74 § 2.30 b	1.12 § 0.02 b	15 § 0.57 ab	72 § 1.15 bc	32 § 1.0 bc	13.3 § 0.57 bc
Cd-0-NaCl- 1.0	59 § 3.71 d	1 § 0.04 c	13 § 0.67 cd	65 § 1.66 d	23 § 1.45 e	11 § 0.88 e
Cd-5-NaCl- 0	76.8 § 1.92 ab	1.17 § 0.05 ab	15 § 0.57 ab	77.2 § 3.28 ab	36 § 0.57 a	15 § 0.66 a
Cd-5-NaCl- 0.5	72.3 § 1.76 bc	1.02 § 0.04 c	13.3 § 0.57 c	67.3 § 2.84 cd	30 § 0.57 cd	12.5 § 0.57 cd
Cd-5-NaCl- 1.0	57 § 1.85 d	0.9 § 0.02 d	12.5 § 0.3 cd	56.2 § 1.15 e	20 § 0.88 f	9.6 § 0.66 f
Cd-10- NaCl-0	74.3 § 1.45 b	1.11 § 0.03 b	13.7 § 0.7 b	74.2 § 2.72 b	34 § 1.52 ab	14 § 0.33 ab
Cd-10- NaCl-0.5	65 § 3.48 cd	0.89 § 0.04 d	12.7 § 0.66 cd	62.2 § 2.88 de	28 § 0.57 d	11 § 0.33 e
Cd-10- NaCl-1.0	50 § 3.2 e	0.8 § 0.03 e	12 § 0.2 d	48.9 § 3.92 f	16 § 1.45 g	8 § 0.33 g
Cd-15- NaCl-0	69 § 3.60 c	1.05 § 0.05 bc	13.2 § 0.66 bc	70.5 § 1.85 c	31.3 § 2.02 bc	13 § 57 bc
Cd-15- NaCl-0.5	60 § 3.06 d	0.85 § 0.05 de	12 § 0.57 d	57.9 § 2.40 e	23.1 § 1.52 e	9.4 § 0.57 f
Cd-15- NaCl-1.0	44 § 2.8 f	0.7 § 0.03 f	10.5 § 0.57 e	41.2 § 2.90 g	12.5 § 1.45 h	6.5 § 0.33 h

For each parameter, the values (mean § standard error of three replicates) sharing the same letter are not significantly different (LSD test, P D 0.05).

Table 2: Effects of various levels of Cd and salinity on root and shoot ionic (Na, K, Cl) concentrations (mmol g-1 dry weight) of A. nilotica in a pot experiment.

Cd and salinity levels	Root Na	Shoot Na	Root K	Shoot K	Root Cl	Shoot Cl
Control	0.12 § 0.02 c	0.14 § 0.01 c	0.90 § 0.07 a	1.25 § 0.02 a	0.16 § 0.04 ij	0.18 § 0.01 hi
Cd-0-NaCl- 0.5	0.50 § 0.01 b	0.66 § 0.02 b	0.71 § 0.05 c	0.80 § 0.01 e	0.85 § 0.03 gh	0.90 § 0.03 fg
Cd-0-NaCl- 1.0	0.90 § 0.03 a	1.10 § 0.03 a	0.35 § 0.03 ef	0.50 § 0.02 h	1.45 § 0.04 d	1.57 § 0.03 d
Cd-5-NaCl- 0	0.12 § 0.02 c	0.13 § 0.05 c	0.86 § 0.02 ab	1.15 § 0.02 b	0.17 § 0.05 i	0.19 § 0.04 hi
Cd-5-NaCl- 0.5	0.49 § 0.02 b	0.66 § 0.05 b	0.65 § 0.02 cd	0.70 § 0.04 f	0.90 § 0.02 g	0.94 § 0.03 g
Cd-5-NaCl- 1.0	0.91 § 0.05 a	1.10 § 0.04 a	0.30 § 0.01 ef	0.39 § 0.05 i	1.55 § 0.02 c	1.64 § 0.02 c
Cd-10- NaCl-0	0.11 § 0.04 c	0.14 § 0.03 c	0.80 § 0.02 bc	1.05 § 0.06 c	0.18 § 0.01 i	0.20 § 0.02 h
Cd-10- NaCl-0.5	0.48 § 0.04 b	0.65 § 0.02 b	0.59 § 0.04 de	0.59 § 0.07 g	0.98 § 0.01 f	1.00 § 0.01 f

Cd-10-	0.91 § 0.05 a	1.12 § 0.01 a	0.27 § 0.06 fg	0.35 § 0.03 ij	1.65 § 0.03 b	1.78 § 0.05 b
NaCl-1.0						
Cd-15-	0.12 § 0.03 c	0.13 § 0.04 c	0.67 § 0.05 cd	0.90 § 0.01 d	0.20 § 0.04 i	0.21 § 0.06 h
NaCl-0						
Cd-15-	0.49 § 0.04 b	0.66 § 0.05 b	0.35 § 0.05 e	0.42 § 0.02 i	1.07 § 0.05 e	1.12 § 0.07 e
NaCl-0.5						
Cd-15-	0.92 § 0.02 a	1.14 § 0.03 a	0.20 § 0.03 h	0.28 § 0.05 jk	1.78 § 0.05 a	1.89 § 0.05 a
NaCl-1.0						

For each parameter, the values (mean § standard error of three replicates) sharing the same letter are not significantly different (LSD test, P D 0.05).

Table 3: Effects of various levels of Cd and salinity treatments on root and shoot Cd concentrations (mg kg⁻¹), root and shoot Cd uptake (mg plant⁻¹) and tolerance index (%) of A. nilotica in a pot experiment.

Cd and salinity levels	Root Cd concentration	Shoot Cd concentration	Root Cd Uptake	Shoot Cd Uptake	Tolerance index
Control	0.19 § 0.15 h	0.24 § 0.15 h	2.97 § 1.4 h	8.88 § 3.5 i	
Cd-0-NaCl-0.5	0.2 § 0.21 h	0.23 § 0.12 h	2.7 § 1.5 h	7.36 § 3.0 i	90 § 5.0 ab
Cd-0-NaCl-1.0	0.21 § 0.15 h	0.24 § 0.15 h	2.31 § 1.0 h	5.52 § 3.6 i	81.3 § 3.0 c
Cd-5-NaCl-0	2.5 § 0.39 g	3.3 § 0.45 g	36.75 § 1.0 g	115.5 § 4.5 h	96.5 § 4.0 a
Cd-5-NaCl-0.5	3.8 § 0.3 f	4.7 § 0.24 f	47.5 § 1.0 e	141 § 2.5 g	84.1 § 3.0 bc
Cd-5-NaCl-1.0	4.5 § 0.3 e	5.4 § 0.3 ef	43.2 § 2.0 f	108 § 7.8 h	70.3 § 2.0 de
Cd-10-NaCl-0	4.1 § 0.3 ef	6.1 § 0.54 e	56.99 § 1.0 d	200.69 § 2.5 e	92.8 § 2.0 ab
Cd-10-NaCl-0.5	5.8 § 0.2 d	8.9 § 0.6 d	63.8 § 0.8 c	249.2 § 8.6 c	77.8 § 4.0 cd
Cd-10-NaCl-1.0	7.0 § 0.3 c	10.9 § 0.3 c	56 § 1.8 c	174.4 § 4.5 f	61.1 § 3.0 e
Cd-15-NaCl-0	5.8 § 0.45 d	9.3 § 0.66 d	75.4 § 2.5 b	291.09 § 4.5 b	88.1 § 3.0 b
Cd-15-NaCl-0.5	8.9 § 0.39 b	15 § 0.69 b	83.66 § 1.8 a	346.5 § 8.9 a	72.4 § 4.0 d
Cd-15-NaCl-1.0	11.2 § 0.36 a	18.5 § 0.39 a	72.8 § 2.0 b	231.25 § 5.0 d	51.5 § 2.0 f

For each parameter, the values (mean § standard error of three replicates) sharing the same letter are not significantly different (LSD test, P D 0.05)

Source: https://www.tandfonline.com/doi/pdf/10.1080/15226514.2017.1413339?needAccess=true

Cadmium Uptake and Distribution in Fragrant Rice Genotypes and Related Consequences on Yield and Grain Quality Traits (2017)

Variety	Treatment	Panicles/pot	Spikelet number/pot	100-grain weight (g)	Seed setting rate (%)	Grain yield/pot (g)
V1	Cd0 Cd1 Cd2 Cd3	$\begin{array}{c} 30.33 \pm 0.33^{a} \\ 23.66 \pm 0.88^{b} \\ 20.00 \pm 0.57^{c} \\ 17.33 \pm 0.88^{d} \end{array}$	$\begin{array}{c} 121.07 \pm \\ 0.58^{bc} \\ 127.52 \pm 3.88^{b} \\ 142.34 \pm 2.87^{a} \\ 113.63 \pm 5.25^{c} \end{array}$	$\begin{array}{c} 23.97 \pm 0.33^{a} \\ 19.88 \pm 0.38^{b} \\ 19.03 \pm 0.32 bc \\ 18.1 \pm 0.11 c \end{array}$	$\begin{array}{c} 89.1 \pm 0.11^{a} \\ 85.963 \pm 1.45^{b} \\ 82.293 \pm 0.74^{c} \\ 79.92 \pm 0.45^{c} \end{array}$	$78.44 \pm 1.40^{a} \\ 51.48 \pm 1.61^{b} \\ 44.51 \pm 0.48^{c} \\ 28.35 \pm 0.05^{d}$
V2	Cd0 Cd1 Cd2 Cd3	$\begin{array}{c} 27.67 \pm 0.33^{a} \\ 25.33 \pm 0.33^{b} \\ 23.66 \pm 0.33^{c} \\ 20.33 \pm 0.66^{d} \end{array}$	$\begin{array}{l} 116.35 \pm 2.46^{c} \\ 132.01 \pm \\ 2.39^{ab} \\ 123.49 \pm \\ 2.58^{bc} \\ 140.32 \pm 7.90^{a} \end{array}$	$\begin{array}{c} 23.60 \pm 0.28^{a} \\ 21.55 \pm 0.17^{b} \\ 19.05 \pm 0.47^{c} \\ 18.63 \pm 0.19^{c} \end{array}$	$\begin{array}{l} 92.32 \pm 0.84^a \\ 87.86 \pm 1.49^b \\ 86.883 \pm 0.32^b \\ 80.697 \pm 1.15^c \end{array}$	$\begin{array}{l} 70.12 \pm 1.60^{a} \\ 63.41 \pm 2.69^{b} \\ 48.31 \pm 0.66^{c} \\ 42.75 \pm 1.38^{c} \end{array}$
V3	Cd0 Cd1 Cd2 Cd3	$\begin{array}{c} 32.33 \pm 0.33^{a} \\ 31.66 \pm 0.33^{a} \\ 28.67 \pm 0.33^{b} \\ 26.66 \pm 0.33^{c} \end{array}$	$\begin{array}{c} 113.11 \pm 2.03^{a} \\ 111.66 \pm 0.70^{a} \\ 110.93 \pm 0.14^{a} \\ 98.58 \pm 2.1^{5b} \end{array}$	$\begin{array}{c} 24.98 \pm 0.24^{a} \\ 24.03 \pm 0.12^{ab} \\ 23.38 \pm 0.47^{bc} \\ 22.66 \pm 0.33^{c} \end{array}$	$\begin{array}{l} 93.79 \pm 0.72^{a} \\ 89.90 \pm 0.25^{b} \\ 88.12 \pm 0.42^{c} \\ 86.22 \pm 0.43^{d} \end{array}$	$\begin{array}{l} 85.63 \pm 1.01^{a} \\ 76.37 \pm 0.19^{b} \\ 65.5 \pm 0.73^{c} \\ 51.42 \pm 2.10^{d} \end{array}$
V4	Cd0 Cd1 Cd2 Cd3	$\begin{array}{c} 25.66 \pm 0.33^a \\ 23.33 \pm 0.33^b \\ 21.66 \pm 0.33^c \\ 19.66 \pm 0.33^d \end{array}$	$\begin{array}{c} 131.33 \pm 3.60^{b} \\ 139.15 \pm \\ 1.73^{ab} \\ 148.57 \pm 6.18^{a} \\ 150.92 \pm 3.7^{2a} \end{array}$	$\begin{array}{l} 22.44 \pm 0.67a \\ 21.05 \pm 0.49^{ab} \\ 19.66 \pm 0.22^{bc} \\ 19.30 \pm 0.60^{c} \end{array}$	$\begin{array}{l} 90.29 \pm 0.96^{a} \\ 87.67 \pm 1.03^{a} \\ 83.54 \pm 0.74^{b} \\ 81.99 \pm 0.47^{b} \end{array}$	$\begin{array}{l} 68.37 \pm 3.59^{a} \\ 59.87 \pm 1.46^{b} \\ 52.87 \pm 2.43^{bc} \\ 46.95 \pm 1.73^{c} \end{array}$
V5	Cd0 Cd1 Cd2 Cd3	$\begin{array}{c} 27.66 \pm 0.33^{a} \\ 25 \pm 0.5774^{b} \\ 24.33 \pm 0.66^{b} \\ 18.33 \pm 0.66^{c} \end{array}$	$\begin{array}{l} 130.58 \pm \\ 0.53^{ab} \\ 117.65 \pm \\ 0.60^{bc} \\ 103.53 \pm \\ 11.81^{c} \\ 147.21 \pm 4.34^{a} \end{array}$	$\begin{array}{c} 24.04 \pm 0.50^{a} \\ 23.44 \pm 0.10a \\ 21.83 \pm 0.56^{b} \\ 19.65 \pm 0.21^{c} \end{array}$	$\begin{array}{l} 89.70 \pm 0.55a \\ 80.05 \pm 0.77^{b} \\ 77.13 \pm 3.54^{b} \\ 76.98 \pm 1.52^{b} \end{array}$	77.9 ± 1.43^{a} 55.19 ± 1.42^{b} 41.94 ± 3.22^{c} 40.77 ± 1.36^{c}

Table 1: Effects of cadmium on rice yield and its parameter

Three replicated means (\pm SE) were calculated for each treatment. Values with different letters are significantly different at p<0.05. Cd0 = 0 mg Cd/kg, Cd1 = 50 mg Cd/kg, Cd2 = 100 mg Cd/kg, and Cd3 = 150 mg Cd/kg

Source: https://www.hindawi.com/journals/jchem/2017/1405878/abs

Physiological responses of water hyacinth, Eichhornia crassipes (Mart.) Solms, to cadmium and its phytoremediation potential (2016)

$\begin{array}{c} CdCl_2 \\ (mg \ L^{-1}) \end{array}$	Day (d)	Root	Shoot	Leaf	Root length (cm)	Total leaf area (cm2)
Control	0 d 21 d	0.44 ± 0.002 1.58 ± 0.36	0.51 ± 0.003 2.13 ± 0.19	0.62 ± 0.009 2.35 ± 0.22	9.9 ± 0.264 20.3 ± 0.45	165.0 ± 8.88 311.4 ± 4.20
5	0 d 21 d	0.44 ± 0.002 $0.86 \pm 0.02* (-45.56\%)$	0.51 ± 0.003 1.25 ± 0.25* (- 41.31%)	0.62 ± 0.003 $1.22 \pm 0.19*$ (-48%)	9.9 ± 0.173 18.2 ± 0.50 (-10.34%)	$\begin{array}{rrrr} 165.6 \pm 1.52 \\ 276.5 \ \pm \ 7.31^{*} & (- \\ 11.21\%) \end{array}$
10	0 d 21 d	0.44 ± 0.003 0.67 ± 0.01* (- 57.34%)	0.51 ± 0.003 $0.76 \pm 0.02* (-64.08\%)$	0.62 ± 0.003 $0.83 \pm 0.008* (-64.46\%)$	9.9 ± 0.20 $17.2 \pm 0.37*$ (-15.27%)	165.6 ± 3.21 254.7 ± 10.14* (- 18.21%)
15	0 d 21 d	0.44 ± 0.003 0.55 ± 0.01* (- 64.6%)	0.50 ± 0.002 0.61 ± 0.01* (- 71.12%)	0.62 ± 0.006 $0.72 \pm 0.008*$ (- 69.19%)	$\begin{array}{l} 9.96 \pm 0.251 \\ \\ 15.4 \pm 0.40 * \\ (-24.13\%) \end{array}$	165.3 ± 3.20 225.9 ± 12.15* (- 27.45%)
20	0 d 21 d	0.44 ± 0.001 0.46 ± 0.01* (- 70.75%)	0.50 ± 0.003 0.53 ± 0.01* (- 75.16%)	0.62 ± 0.009 $0.65 \pm 0.01*$ (-72.17%)	9.9 ± 0.057 14.5 ± 0.20* (-28.57%)	164.66 ± 4.5 205.8 \pm 4.32* (- 33.91%)

Table 1: Dry biomass (g/plant) of different plant tissues along with root length (cm) and total leaf area (cm²) of Eichhornia crassipes grown in different cadmium concentrations.

* = significantly different from control at P < 0.05; values are mean \pm SD of 3 replicates; values in the parentheses include percent decrease in mean values as compared to the corresponding control values.

Table 2: Effect of cadmium treatments on leaf pigment contents of *Eichhornia crassipes* after 21 days

CdCl ₂	Chlorophyll (mg g ⁻¹ fr	Carotenoid		
$(\operatorname{mg} \mathbf{L}^{-1})$	Ca	C _b	C _{a+b}	C _{x+c}
0	6.15 ± 0.081	1.67 ± 0.143	7.83 ± 0.225	2.09 ± 0.035
5	$5.69\pm0.09*$	$1.86 \pm 0.072 **$	$7.55 \pm 0.159 **$	$1.8\pm0.047*$
10	$4.07 \pm 0.042*$	$1.30 \pm 0.132*$	$5.38 \pm 0.174*$	$1.49 \pm 0.022*$
15	$2.27 \pm 0.218*$	$0.767\pm0.1*$	$3.04 \pm 0.122*$	$1.49 \pm 0.022*$
20	$1.48 \pm 0.117*$	$0.202 \pm 0.096*$	$1.68 \pm 0.138*$	$0.687 \pm 0.042*$

Ca= chlorophyll a; Cb= chlorophyll b; Ca + b= total chlorophyll; Cx + c = carotenoid. Values are mean \pm SD (n = 3); * = significantly different and ** = not significantly different at P < 0.05 at various doses of Cd for a particular plant pigment as compared to control values. Table 3: Effect of cadmium treatments on leaf MDA and protein contents of *Eichhornia* crassipes after 21 days.

$CdCl_2 (mg L^{-1})$	Control	5	10	15	20
MDA (µmol g ⁻¹ FW)	5.69 ± 0.463	$8.3 \pm 0.325^{**}$	$20.51 \pm 2.79^*$	$25.98 \pm 2.26^*$	$33.55 \pm 1.63^*$
Protein (mg g ⁻¹ FW)	24.32 ± 0.58	$20.0 \pm 1.0^{*}$	$17.89 \pm 0.84^{*}$	$13.46 \pm 0.46^{*}$	$9.43 \pm 0.51^{*}$

* = significantly different and ** = not significantly different from control at P < 0.05; values are mean \pm SD of 3 replicates.

Table 4: Cadmium accumulation in different plant parts (roots, shoots, and leaves) of *Eichhornia crassipes* after 21 days.

CdCl ₂	Cadmium concentration (µg g ⁻¹ dry wt) in plant parts							
(mg L ⁻¹)	Root	Shoot	Leaf	Whole plant				
5	846.6 ± 43.22	937.9 ± 61.84	850.2 ± 52.47	878.3 ± 51.68				
10	956.0 ± 43.44	986.0 ± 76.39	958.8 ± 68.24	966.9 ± 61.16				
15	$1908.6 \pm 18.88^{*}$	$1966.1 \pm 28.58^*$	$1908.6 \pm 5.72^*$	$1927.8 \pm 17.03^{*}$				
20	921.97 ± 38.13	967.33 ± 21.79	848.22 ± 76.77	912.5 ± 40.46				

Mean \pm SD (n = 3); * indicates significance at P < 0.05 at different doses for a particular plant tissue.

Table 5: Bioconcentration factor (BCF), translocation factor (TF), and translocation efficiency (%) of cadmium in different parts of *Eichhornia crassipes*.

$\begin{array}{c} CdCl_2\\ (mg \ L^{-1}) \end{array}$	BCFroot	BCF shoot	BCF leaf	BCF whole	TF	Efficiency (%)
5	169.3 ± 8.64	187.5 ±12.3	170 ± 10.49	526 ± 31.0	1.0 ±0.017	100.4 ± 1.76
10	95.6 ± 4.34	98.6 ± 7.63	95.8 ± 6.8	290 ± 18.35	1.00 ±0.03	100.2 ± 3.2
15	127.2 ± 1.25	131.07 ± 1.9	127.2 ±0.38	385 ± 3.40	1.0 ± 0.007	100 ± 0.78
20	46.09 ± 1.90	48.36 ±1.08	42.41 ±3.83	121 ± 33.76	0.92 ±0.05	91.8 ± 5.3

Source: https://journals.tubitak.gov.tr/biology/issues/biy-16-40-1/biy-40-1-7-1411-86.pdf

Effect of cadmium on physiological parameters of cereal and millet plants—A comparative study (2016)

Table 1: Differential Cd assimilation and translocation ratio in wheat and kodo millet.

Cd concentration i	in	Triticum aestivum			Paspalum scrobiculatum			
μm		Cadmium assimilation (mg/kg)			Cadmium assimilation (mg/kg)			
		Root	Shoot	Shoot/Root	Root	Shoot	Shoot/Root Ratio	
				Ratio				
10		14.50±1.24 ^a	1.79±0.40 ^a	1.79±0.40 ^a	73.28±0.88 ^a	7.32±0.44 ^a	0.0996	
20		11.08 ± 1.46^{b}	2.45 ± 0.64^{a}	0.22227	103.40±1.6 ^b	19.59±0.83 ^b	0.1986	
50		17.52±1.14 ^c	6.43±0.31 ^a	0.3674	164.27±1.5°	57.33±2.83 °	0.3488	
100		46.29±2.58 ^d	30.00±1.9 ^b	0.6481	248.82 ± 2.4^{d}	150.13±1.91 ^d	0.6028	
500		97.32±2.23 ^e	80.43±1.4 ^c	0.8621	896.32±1.9 ^e	896.32±1.9 ^e	0.8182	

The values followed by different letters are significantly different at a significance level of p<0.05

Source: www.tandfonline.com/doi/full/10.1080/15226514.2016.1207608?scroll=top...true

Effect of cadmium on physiological parameters of cereal and millet plants—A comparative study (2016)

Table 1: Effect of Cd on induction of PCs in leaves, stems and roots of cabbage variety Pluto

Plant	Cd level	Concentrations of PCs and GSH ^a							
Part	$(\mu g L^{-1})$	PC ₂	PC ₃	PC ₄	GSH	PCs+GSH			
		(mmol thiol	(mmol thiol [-SH] kg ⁻¹ DW)						
Leaves	Control ^b	0a	0a	0a	2.37a	2.37a			
	500	0.20b	0.50b	0.46b	2.24a	3.40b			
Stem	Control ^b	0a	0a	0a	5.60a	5.60a			
	500	0.30b	0.25b	0.15b	5.50a	6.20b			
Roots	Control	0.50 ± 0.03	0.80 ± 0.03	0.55 ± 0.01	4.10 ± 0.15	5.95 ± 0.20			
	500	1.50 ± 0.12	2.50 ± 0.40	2.40 ± 0.30	4.85 ± 0.20	11.3 ± 0.80			

Plants were harvested after 4 weeks of Cd exposure. For a plant part, means with the same letter are not significantly different (P > 0.05). LSD comparisons are valid only within the one plant part and one constituent ^aEach value is the mean of four replicates

^bCadmium in the control is due to background contamination of the hydroponic solution (1 μ g L⁻¹)

Table 2: Effect of cadmium on selected minerals in different parts of the cabbage variety, Pluto

Plant	Cd level	Measured element concent	trations					
Part	$(\mu g L^{-1})$	(mg kg ⁻¹ DW)						
		Cd	Zn	Mn	Cu	Fe	Ca	S
Leaves	1^{a}	1.1a	64a	130a	13a	40a	4.29a	1.65a
	500	107b	36b	100b	11a	31b	3.94b	2.03b
Stems	1 ^a	0.5a	51a	20a	8a	28a	1.92a	0.62a
	500	41b	36b	13b	7a	24b	1.73b	0.60a
Roots	1^{a}	5.0a	260a	146a	319a	_ ^b	1.19a	1.26a
	500	686b	173b	66b	302b	_ ^b	1.03a	1.28a
Adequate foliar concentration ^c			20-200	25-200	5-15	30-200	1–3	0.3–0.7

The plants were harvested after 4 weeks of Cd exposure. Each value is the mean of four replicates. Means with the same letter are not significantly different (P > 0.05). Comparisons are valid only within one plant part for the one constituent aThe concentration of Cd in the control treatment was due to background contamination

bValues for Fe in roots are not reported, as they were inflated by surface oxide deposits

cBryson et al. (2014)

Source: https://link.springer.com/article/10.1007/s11356-015-5779-6#Tab2