Effect of elevated atmospheric CO₂ concentration on growth and physiology of wheat and sorghum under cadmium stress (2018)

Effect of [CO₂] and [Cd] treatments on leaf area, shoot and root DW (dry weight) of wheat and sorghum plants.

Shoot/Root	RDW	SDW	SLA	LA (cm²)	C _{Cd}	[CO ₂]	Plant
ratio	(g)	(g)			(mg/kg)		species
2.20b	1.62j	3.54f	228.2h	435.8g	0	Ambien t	Wheat
1.94e	1.76b	3.42g	214.11	383.2i	10		
2.00de	1.22m	2.44k	226.1i	343.7k	20		
1.66f	1.13n	1.90n	234.8f	284.1n	40		
2.43a	1.84h	4.50d	210.1m	506.3e	0	Elevated	
2.05cd	2.06f	4.23e	200.1n	442.1f	10		
2.11bc	1.401	2.90i	216.7k	390.1h	20		
1.74f	1.26m	2.201	231.9g	326.91	40		
1.97de	2.75b	5.42b	214.8	569.4c	0	Ambien t	Sorghum
2.04cd	2.26d	4.63c	246.2d	551.6d	10		
1.42g	1.91g	2.72j	217.9k	300.7 m	20		
1.25h	1.46k	1.83n	256.6c	241.20	40		
2.02cde	3.04a	6.17a	237.7e	715.5a	0	Elevated	
2.20b	2.45c	5.40b	265.8b	693.9b	10		
1.50g	2.16e	3.22h	221.6j	361.2j	20		
1.30h	1.60j	2.03m	274.7a	285.7n	40		

 $*C_{Cd}$: Cd concentration, LA: leaf area, SLA: specific leaf area, SDW: shoot dry weight, RDW: root dry weight in each column different letters show significant differences (P < 0.05) between treatments

For wheat and sorghum at both CO_2 levels, increases in Cd concentration ([Cd]) decreased all the indices of plant growth, i.e. leaf area, and shoot and root DW, whereas at the same [Cd], e[CO₂].

Source: https://www.tandfonline.com/doi/full/10.1080/00103624.2018.1547388

Atmospheric CO_2 enrichment effect on the Cu-tolerance of the C_4 cordgrassT Spartinadensiflora (2018)

Photosynthetic pigments concentrations ($\mu g/g$) and DES state in randomly selected, fully expanded penultimate leaves of Spartinadensiflora in response to treatment with a range of Cu concentrations at 400 and 700 ppm CO₂ after 30 d of treatment. Values represent mean ± SE, n = 5. Different letters indicate means that are significantly different from each other (LSD, P < 0.05).

[C u] (m M)	[C O ₂] (pp m)	Chl a	Chl b	Phe a	b- carot ene	Lutei n	Ne ox an thi n	Viola xant hin	Zeax anthi n	DES
0	400	242.5± 19.2 ^a	91.5 ± 6.7^{a}	14.1 ± 2.3^{a}	$5.8\pm$ 0.5^{a}	20.1 ± 4.1^{a}	8.9 ± 1.4^{a}	3.8± 1.1 ^a	$6.4\pm$ 0.9^{a}	$0.60\pm 0.05^{\rm a}$
	700	200.4± 17.4 ^a	82.6± 5.1 ^a	15.5± 2.5 ^a	5.6 ± 0.4^{a}	17.8 ± 2.4^{a}	7.1± 1.2 ^a	$\begin{array}{c} 4.5 \pm \\ 0.9^{\mathrm{a}} \end{array}$	5.9 ± 1.1^{a}	$0.52\pm 0.04^{ m a}$
15	400	162.6± 6.5 ^b	51.4± 1.9 ^b	$\begin{array}{c} 5.7 \pm \\ 0.2^{\mathrm{b}} \end{array}$	4.5 ± 0.2^{a}	15.3 ± 0.8^{a}	7.1 ± 0.4^{a}	3.6 ± 0.2^{a}	4.7 ± 0.3^{a}	0.42 ± 0.01^{a}
	700	174.2± 11.5 ^b	44.4 ± 1.6^{b}	$\frac{8.8\pm}{2.4^{b}}$	5.9± 1.4 ^a	15.4± 2.9 ^a	5.5 ± 1.1^{a}	6.7 ± 2.2^{a}	5.9± 1.2 ^a	0.49 ± 0.06^{a}
45	400	167.3± 8.7 ^b	54.0± 3.1 ^b	$\begin{array}{c} 4.9 \pm \\ 0.5^{\mathrm{b}} \end{array}$	5.1± 0.3 ^a	15.9 ± 0.9^{a}	$6.8\pm 0.6^{\mathrm{a}}$	3.6± 1.2 ^a	5.1 ± 0.3^{a}	0.41 ± 0.07^{a}
	700	166.5± 7.4 ^b	58.3 ± 4.5^{b}	$7.8\pm 1.2^{ m b}$	5.1± 0.4 ^a	15.3 ± 1.8^{a}	$\begin{array}{c} 6.6 \pm \\ 0.2^{\mathrm{a}} \end{array}$	5.4± 1.3 ^a	$\begin{array}{c} 5.5 \pm \\ 0.4^{\mathrm{a}} \end{array}$	0.51 ± 0.04^{a}

De-Epoxidation State (DES)

DES = [Antheraxantin] + [Zeaxanhin]/[Violaxanthin] + [Antheraxantin] + [Zeaxanthin]

Chl a, Chl b and Phe a concentrations decreased in presence of Cu in similar degree in both atmospheric CO2 concentrations treatment (Twoway ANOVA: Cu, p < 0.05), but without statistical differences between Cu treatments. Contrarily the concentrations of each specific carotenoids and DES state did not vary with Cu and CO2 concentrations treatments.

Source: https://www.sciencedirect.com/science/article/pii/S0176161717302808

Atmospheric CO_2 enrichment effect on the Cu-tolerance of the C_4 cordgrassT Spartinadensiflora (2018)

Total Cu, Ca, K, Mg and P concentrations for leaves and roots of Spartinadensiflora in response to treatment with a range of Cu concentrations at 400 and 700 ppm CO₂ for 30d.

Tissue	[Cu]	[CO ₂]	Cu (mg	Ca_{-1} (mg	$K (mg g^{-1})$	$Mg (mg g^{-1})$	$P(mg g^{-1})$
	(mM)	(ppm)	Kg ⁻¹)	g ⁻¹)			
Leaves	0	400	4.9 ± 1.0^{a}	3.4 ± 0.3^{a}	25.4 ± 0.2^{a}	3.3 ± 0.2^{a}	2.6 ± 0.1^{a}
		700	$5.4\pm0.2^{\mathrm{a}}$	3.1 ± 0.2^{a}	24.3 ± 0.3^{a}	2.9 ± 0.1^{a}	2.9 ± 0.1^{a}
	15	400	179.6 ± 2.0^{b}	3.1 ± 0.2^{a}	17.8 ± 0.4^{b}	2.9 ± 0.1^{a}	1.6 ± 0.2^{b}
		700	248.9± 6.3 ^{bc}	3.1 ± 0.2^{a}	19.2± 0.4 ^b	2.7 ± 0.1^{a}	1.9 ± 0.2^{b}
	45	400	737.5 ± 4.0^{d}	3.6 ± 0.1^{a}	22.1 ± 0.6^{ab}	3.4 ± 0.4^{a}	2.6 ± 0.2^{a}
		700	$291.4 \pm 4.9^{\circ}$	2.9 ± 0.4^{a}	19.6± 1.1 ^b	3.0 ± 0.2^{a}	2.1 ± 0.1^{ab}
Roots	0	400	7.6 ± 0.5^{a}	2.4 ± 0.1^{a}	10.5 ± 0.3^{a}	1.4 ± 0.1^{a}	1.9 ± 0.2^{a}
		700	8.2 ± 1.4^{a}	2.2 ± 0.1^{a}	15.3 ± 1.0^{a}	1.7 ± 0.3^{a}	2.7 ± 0.1^{b}
	15	400	715.8 ± 11.0^{b}	1.9 ± 0.1^{b}	7.8 ± 0.5^{b}	1.1 ± 0.2^{a}	1.3 ± 0.2^{a}
		700	$581.3 \pm 9.0^{\circ}$	1.6 ± 0.2^{b}	6.0 ± 0.3^{b}	1.0 ± 0.2^{a}	1.0 ± 0.5^{a}
	45	400	$588.5 \pm 3.0^{\circ}$	1.5 ± 0.2^{b}	7.3 ± 0.4^{b}	1.2 ± 0.2^{a}	1.5 ± 0.2^{a}
		700	$627.7 \pm 12.0^{\circ}$	1.5 ± 0.3^{b}	8.6± 0.5 ^a	1.1 ± 0.2^{a}	1.8 ± 0.4^{a}

Values represent mean \pm SE, n = 6. Different values indicate means that are significantly different from each other (Two-way ANOVA, p < 0.05)

Source: https://www.sciencedirect.com/science/article/pii/S0176161717302808

Effect of elevated atmospheric CO₂ concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla (2017)

	Q. acutissima			F. rhynchophylla			
Plant growth parameters	Ambient air	Elevated CO ₂	р	Ambient air	Elevated CO ₂	р	
Total dry weight (g)	14.77±2.06	15.35±3.59	0.892	29.5±4.60	28.9±1.71	0.914	
S/R	0.51±0.009	0.35±0.031	0.003	1.16±0.06	0.98±0.16	0.307	
LWR	0.16±0.002	0.14 ± 0.004	0.001	0.11±0.02	0.13±0.008	0.028	
Thickness (mm)	0.09±0.002	0.11±0.003	0.002	$_2^{0.13\pm0.00}$	0.15±0.01	<0.001	
Leaf area (cm ²)	34.90±2.30	32.23±3.14	0.518	34.74±2.4 8	24.23±2.79	0.030	
SLA (cm ² g ⁻¹)	235.1±8.79	176.7±5.93	0.001	241.1±5.9 6	181.9±2.19	<0.001	

Comparison of the growth parameters of Q. acutissima and F. rhynchophylla in the ambient air (380 ppm) and elevated CO₂ (700 ppm) chambers.

Values are means \pm SE.

* Shoot - root ratio (g g-1) = total shoot weight (g) / total root weight (g)

* Leaf weight ratio (g g-1) = total leaf weight (g)/total plant weight (g)

* Specific leaf area (cm2 g -1) = total leaf area (cm2)P = total leaf weight

The growth of Q. acutissima and F. rhynchophylla did not statistically differ between the ambient air and elevated CO_2 chambers . However, the shoot/root (S/R) ratio differed between the two species. The S/R ratio of Q. acutissima was significantly lower in elevated CO_2 chamber. Leaf growth conspicuously differed between the conditions. The thickness of the leaf blade was significantly higher (22% for Q. acutissima and 15% for F. rhynchophylla) in the elevated CO_2 chamber. The leaf area of F. rhynchophylla litter was significantly lower in elevated CO_2 chamber. The leaf area of Q. acutissima and F. rhynchophylla were significantly lower at the higher CO_2 concentration.

Source: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171197&type=printable

Species	Growing conditions	%Info	Total	Other effects on mycorrhizae	Root response
Betula alleghaniensis	Mesocosms (700 ll l–"), growing in competition with <i>Betula papyrifera</i>	Ť			Mass ↑ , length ↑
Betula papyrifera	Mesocosms (700 ll l–"), growing in competition with <i>Betula alleghaniensis</i>	Ť	Ť		Mass =†, length =
Betula papyrifera	Pots in GC (700 ll 1–")			Altered morphotype assemblage s, extraradical hyphal length	Mass †
Betula pendula	OTC (700 lll-"), no fertilizer	T		Altered species composition	Mass
Liriodendron tulipifera	24 weeks, pots in GC (•150 and-300 μ 1–")	-=			Mass
Liriodendron tulipifera	OTC (•150 and •300 µl–")	=			Mass †
Pinus caribaea	49 weeks, pots in GC (660 ll l–")	=			
Pinus echinata	41 weeks, pots in GC	-=		Signif. # in % Inf. at 34	Mass †
	(double CO#), no fertilizer		weeks, not at ®nal harvest		
Pinus echinata	24 weeks, pots in GC (double CO#)	=	Signif. In % Inf. at 6 weeks, not at ®nal harvest		Mass

Pinus	Pots in OTC (720 ll	T	No changes in	Length
palustris	1-")		morphotype	
			assemblages, effect	
			larger at low N and	
			adequate water	
Pinus	OTC (•175 and •350 ll		▲ Extraradical	Area
ponderosa	1-")		fungal hyphae,	density
			Mycorrhizal turnover	Ť
Pinus ponderosa	Pots in GC (700 ll l-")	Ť	↑ Density ↑	
Pinus radiata	49 weeks, pots in	=		
	GC (660 ll l-")			
Pinus strobus	Pots in GC (700 ll	T	Altered morphotype	Mass 🕇
	1-")		assemblages	
Pinus	Pots in GC (700 ll	Ť	Altered morphotype	Ť
syl.estris	1-")		assemblages	
Pinus	120 d, pots in	=	No effect on total	
syl.estris	GC (double CO#)		fungal mass	
Pinus taeda	Open bottom pots in OTC (700 ll l–")	=		t
Populus	Open bottom pots in	=	Extraradical	Mass
tremuloides	OTC (700 ll l-")		mycorrhizal	
			hyphal	
0	N-poor conditions, \$ unde		conditions	
Populus hybrids	2 years, OTC (-350 ll 1–")	AM =		Mass↑
Quercus alba	24 weeks, pots in		ed mycorrhizal	Mass 🛉
	GC (double CO#)	infection before increase in		
		root mass, alterations in		
		species abundance		
Quercus alba	OTC (•150 and •300 ll 1–")	t		Mass 🛉
Tsuga .	Pots in GC	EM =		Mass
canadensis	(700 ll l-")	AM 🕇		

Experimental (growing) conditions, response of the percentage of mycorrhizal infection (%Inf), of total amount of mycorrhizae, as well as e ne root response are reported for each study. EM, ectomycorrhizae; AM, arbuscular mycorrhizae; -, no signie cant changes ($P!0\pm05$); , signie cantly enhanced ($P!0\pm05$).

Source: R. Ceulemans at al. (2016), Effects of CO2 Enrichment on Trees and Forests: Lessons to be Learned in View of Future Ecosystem Studies, Annals of Botany

Effects of elevated CO₂ on tree litter decomposition (2016)

Tree species and tissue	-		Response of litter quality	Response of decomposition
Acer pseudoplatanus, senesced leaves	1 season, 600 μ l–", pots in solar domes	8 months, chambers	C / N , lignin / N	=
<i>Betula pubescens</i> , senesced leaves	1 season, 600 μ 1–", pots in solar domes	5 months, chambers	C / N , lignin / N	¥
Betula	1 season, 600 µ	3 months,		=
pubescens, live roots <2 mm	l-", pots in solar domes:	Chambers with soil		
Castanea sati.a, senesced leaves	non-fertilized 2 years, 700 ll 1–", pots in GC	6 months, chambers: Incomplete decomposer community complex decomposer community	C/NC/N C/N, lignin = C /N, lignin =	¥
Fraxinus excelsior, senesced leaves	1 season, 600 ll l-", pots in solar domes		C / N , lignin /N	
Liriodendron tulipifera, senesced leaves	1 season, •300 ll 1–", pots in GC, exposed to ozone		N , lignin	÷
Liriodendron tulipifera, senesced leaves	2 years, •150 and -300 ll 1–", OTC		C / N , lignin /N	÷
Picea sitchensis, senesced needles	1 season, 600 ll l-", pots in solar domes		C / N , lignin /N	=
Picea sitchensis, live roots !2 mm	1 season, 600 ll -", pots in solar domes: 3 months, chambers with soil fertilized non-fertilized	3 months, chambers with soil	C/NC/N	=

Tree species and tissue, fumigation conditions and duration, decomposition conditions and duration, and changes in litter chemistry and decomposition rates are reported for every study.OTC, Open top chambers; GC, growth chambers; $^-$, no signi®cant changes (P!0±05); #, signi®cantly enhanced (P!0±05); \$, signi®cantlydecreased (P!0±05).

Source: R. Ceulemans at al. (2016), Effects of CO2 Enrichment on Trees and Forests: Lessons to be Learned in View of Future Ecosystem Studies, Annals of Botany