Endosulfan Numerical Data

Organochlorine pesticide residues in plants and their possible ecotoxicological and agri food impacts (2021)

Table 1:	Mean recovery,	relative standard	deviation	(RSD) and	limit of	detection ((LOD)	of OCPs.
----------	----------------	-------------------	-----------	-----------	----------	-------------	-------	----------

Compound	Mean recovery	Precision RSD (%)	LOD (ng/g)	LOQ (ng/g)	Calibration curve, r ²
	(%)				
a-HCH	95	0.5	0.002	0.005	0.9984
β-НСН	94	1.5	0.002	0.006	0.9997
<i>ү-НСН</i>	88	1.1	0.001	0.005	0.9982
δ-HCH	81	1.3	0.001	0.008	0.9995
Heptachlor	94	0.3	0.004	0.009	0.9996
Heptachlor epoxide	92	0.1	0.004	0.011	0.9978
Isomer					
a-chlordane	84	1.6	0.002	0.009	0.9968
γ-chlordane	82	1.5	0.001	0.008	0.9975
4,4'-DDT	93	0.9	0.001	0.006	0.9993
4,4'-DDE	89	0.3	0.002	0.006	0.9981
4,4'-DDD	87	0.8	0.002	0.006	0.9979
Aldrin	89	0.3	0.001	0.004	0.9988
Dieldrin	96	0.9	0.001	0.006	0.9991
Endrin	90	0.8	0.003	0.008	0.9985
Endrin Aldehyde	93	0.5	0.002	0.005	0.9973
Endrin Ketone	91	0.4	0.002	0.005	0.9993
Endosulfan-I (α)	85	1.2	0.001	0.007	0.9982
Methoxychlor	85	1.2	0.001	0.007	0.9982

Table 2: Maximum Residue Levels (MRLs)* for the OCP residues in plant samples.

Compound	Pesticide residue obtained (ppm) in the present study	Codex MRL (mg/kg)	Year of adoption	ADI (mg/kg BW)	Endocrine Disrupting Effects ^{\$}
ү-НСН	0.581 – 0.586	0.01	2016	0–0.005	Reduction of estrous cycles and luteal progesterone concentrations. Increase of insulin and estradiol blood serum concentrations, decrease thyroxin concentrations
Heptachlor epoxide isomer	0.513 - 1.174	NA	NA	NA	Binding to cellular estrogenic and androgen receptors
Dieldrin ¹	0.489–0.490	0.05–0.1	1997	0.0001	Competitive binding to androgen receptors, estrogenic effect, stimulation of estrogenic receptor production
Endrin²	0.542-0.648	0.05	1997	0.0002	
Endrin Aldehyde	BDL-0.630	NA	NA	NA	Competitive binding to androgen receptors
Endrin Ketone	0.557–0.579	0.05	1997	0.0002	

*MRLs as adopted by the Codex Alimentarius Commission up to and including its 39th Session (July 2016). MRLs mentioned are for straw / stems, and these are based on extraneous residues.

^{\$} Source: Munif et al. (2011).

¹ 0.05 mg/kg is for leafy vegetables, and 0.1 mg/kg is for root and tuber vegetables.

² for Fruiting vegetables.

ADI acceptable daily intake, BW body weight.

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426456/

Effect of the Pesticide Endosulfan and Two Different Biostimulants on the Stress Responses of *Phaseolus leptostachyus* Plants Grown in a Saline Soil (2021)

Table 1: Physicochemical characterisation of the soil collected in the Chinampas area of Xochimilco, Mexico City, according to the Mexican NMX-021 norm. Mean values \pm SD (n = 5) are shown for each soil parameter.

Soil Characteristics	Value	Classification NMX-021
рН	7.35 ± 0.76	Neutral
EC (dS m ⁻¹⁾	12.8 ± 3.53	Saline soil
Moisture (%)	90.7 ± 5.43	N/A
C organic (%)	12.5 ± 0.15	N/A
Organic matter (%)	21.6 ± 0.25	Very high
Total nitrogen (%)	0.80 ± 0.06	Very high
Phosphorus (mg kg ⁻¹)	10.7 ± 0.53	High
Sand (%)	33.0 ± 2.28	N/A
Clay (%)	36.2 ± 0.28	N/A
Silt (%)	30.7 ± 2.00	N/A

Table 2: Electrical conductivity (EC) of the pot substrates after one month of plant growth. Soil sampled in the Chinampas area was used as control (C); soil contaminated with endosulfan (CE); soil bioremediated with *Penicillium crustosum* (CPc); endosulfan-contaminated soil, bioremediated with *P. crustosum* (EPc); soil bioremediated with citric waste (CCW); endosulfan-contaminated soil, bioremediated with citric waste (ECW). Values represent the means of five samples per treatment, followed by SD. Different letters indicate significant differences between treatments, according to the Tukey test, at the 99% confidence level.

Substrate Type	$EC (dS m^{-1})$
С	11.1 ± 2.88 ^c
CE	10.0 ± 3.40 b
СРс	9.23 ± 2.76 ^a
EPc	9.88 ± 3.29 b
CCW	9.35 ± 3.03 ^a
ECW	10.2 ± 3.38 b

Table 3: Effect of soil treatments on plant growth parameters. Soil sampled in the Chinampas area was used as control (C); soil contaminated with endosulfan (CE); control soil bioremediated with *Penicillium crustosum* (CPc); endosulfan- contaminated soil, bioremediated with *P. crustosum* (EPc); control soil bioremediated with citric waste (CCW); endosulfan- contaminated soil, bioremediated with citric waste (ECW). Growth parameters abbreviations: germination rate (GR); root length (RL); stem length (SL); root fresh weight (RFW); stem fresh weight (SFW); leaf fresh weight (LFW); leaf water content (LWC). Values represent the means of five replicas (five individual plants) followed by SD. Different letters in each row indicate significant differences between treatments, according to the Tukey test at the 99% confidence level.

Trait	С	CE	CPc	EPc	CCW	ECW
GR (%)	91.7 ± 15.1 b	66.7 ± 13.6 a	$100.0\pm0.0~b$	$100.0\pm0.0~b$	$85.0 \pm 24.1 \text{ b}$	91.7 ± 15.1 b
RL (cm)	12.4 ± 2.70 c	$3.99 \pm 0.90 a$	10.8 ± 1.25 c	$7.68 \pm 1.70 \text{ b}$	7.94 ± 1.53 b	$6.28 \pm 1.34 \text{ b}$
SL (cm)	36.0 ± 10.5 a,b	$39.4 \pm 6.29 \text{ b}$	34.8 ± 3.80 a,b	30.8 ± 8.79 a	35.9 ± 4.81 a,b	39.5 ± 7.98 b

RFW (g)	0.11 ± 0.02 a	0.14 ± 0.03 a	$0.43\pm0.15~b$	0.12 ± 0.03 a	0.51 ± 0.17 c	0.14 ± 0.05 a
SFW (g)	0.82 ± 0.40 a,b	$0.94 \pm 0.14 \text{ b}$	$1.16\pm0.38~b$	0.88 ± 0.21 a,b	$1.07\pm0.20~b$	0.73 ± 0.22 a
LFW (g)	0.80 ± 0.28 c	$0.50\pm0.121~b$	$1.43 \pm 0.36 \text{ d}$	0.38 ± 0.16 a	1.41 ± 0.33 d	$0.50\pm0.19~b$
LWC (%)	88.2 ± 4.20 b	78.4 ± 3.60 a	$89.5\pm0.88~b$	80.4 ± 3.85 a	88.4 ± 1.08 b	80.9 ± 3.14 a

Table 4: Effect of soil treatments on photosynthetic pigments contents. Chl a: chlorophyll a, Chl b: chlorophyll b, Caro: total carotenoids. Treatments: Soil sampled in the Chinampas area was used as control (C); soil contaminated with endosulfan (CE); control soil bioremediated with *Penicillium crustosum* (CPc); endosulfan-contaminated soil, bioremediated with *P. crustosum* (EPc); control soil bioremediated with citric waste (CCW); endosulfan-contaminated soil, bioremediated with citric waste (ECW). Values represent the means of five replicas (five individual plants) followed by SD. Different letters in each column indicate significant differences between treatments, according to the Tukey test at the 99% confidence level.

Treatment	$Chl a (mg g^{-1} DW)$	Chl b (mg g^{-1} DW)	Ratio Chl a/Chl b	Caro (mg g^{-1} DW)
С	7.40 ± 2.36 a	2.13 ± 0.74 a,b	3.65 ± 1.06 a	1.50 ± 0.26 a
CE	$13.4 \pm 2.05 \text{ b}$	3.59 ± 0.45 a,b	3.71 ± 0.57 a	2.26 ± 0.57 a
СРс	22.7 ± 1.93 c	$5.68 \pm 0.59 \text{ c}$	4.01 ± 0.18 a,b	$3.45 \pm 0.25 \text{ b}$
EPc	25.4 ± 1.99 c	6.73 ± 0.89	3.83 ± 0.61 a,b	4.21 ±0.29 b
CCW	22.0 ± 1.75 c	4.09 ± 0.88 b,c	5.68 ± 1.67 b	3.32 ± 0.67 b
ECW	$14.03\pm1.90~\text{b}$	3.66 ± 0.29 a,b	3.82 ± 0.24 a	$2.22\pm0.26~a$

Table 5: Effect of soil treatments on osmolyte contents. Pro: proline, TSS: total soluble sugars; gluc: glucose, used as the standard in TSS determination. Treatments: Soil sampled in the Chinampas area was used as control (C); soil contaminated with endosulfan (CE); control soil bioremediated with *Penicillium crustosum* (CPc); endosulfan-contaminated soil, bioremediated with *P. crustosum* (EPc); control soil bioremediated with citric waste (CCW); endosulfan-contaminated soil, bioremediated soil, bioremediated with citric waste (ECW). Values represent the means of five replicas (five individual plants) followed by SD. Different letters in each column indicate significant differences between treatments, according to the Tukey test at the 99% confidence level.

Treatment	Proline (µmol g ⁻¹ DW)	TSS (mg eq. gluc g^{-1} DW)
С	18.2 ± 0.58 ^c	1.84 ± 0.10 ^a
CE	18.6 ± 0.52 °	2.16 ± 0.34 a,b
CPc	8.53 ± 1.27 ^a	1.95 ± 0.18 ^a
EPc	17.4 ± 0.56 ^c	2.34 ± 0.34 b
CCW	10.1 ± 0.93 ^a	1.46 ± 0.21 ^a
ECW	13.6 ± 0.44 b	1.95 ± 0.17 a

Table 6: Effect of soil treatments on oxidative stress markers and non-enzymatic antioxidants. MDA: malondialdehyde, H₂O₂: hydrogen peroxide, TPC: total phenolic compounds; GA: gallic acid, used as the standard in TPC determination. Treatments: Soil sampled in the Chinampa area was used as control (C); soil contaminated with endosulfan (CE); control soil bioremediated with *Penicillium crustosum* (CPc); endosulfan-contaminated soil, bioremediated with *P. crustosum* (EPc); control soil bioremediated with citric waste (CCW); endosulfan-contaminated soil, bioremediated with citric waste (ECW). Values represent the means of five replicas (five individual plants) followed by SD. Different letters in each column indicate significant differences between treatments, according to the Tukey test at the 99% confidence level.

Treatment	MDA(nmol g ⁻¹ DW)	$H_2O_2 \ (nmol \ g^{-1} \ DW)$	TPC(mg eq. GA g ⁻¹ DW)
С	656.5 ± 58.4 d	362.4 ± 31.5 a	$21.1 \pm 2.68 \text{ b}$
СЕ	$704.8 \pm 54.5 \text{ d}$	395.8 ± 35.9 a,b	$19.6 \pm 2.71 \text{ b}$
СРс	460.4 ± 64.8 b,c	399.2 ± 17.0 a,b	$19.5 \pm 1.91 \text{ b}$
EPc	$328.3 \pm 64.8 \text{ b}$	467.2 ± 52.1 b	$19.0 \pm 2.71 \text{ b}$
CCW	476.8 ± 37.4 c	331.7 ± 15.8 a	11.6 ± 1.75 a
ECW	165.1 ± 13.7 a	333.6 ± 25.7 a	13.3 ± 2.24 a

Table 6: Effect of soil treatments on the specific activity of antioxidant enzymes expressed in units mg^{-1} protein. SOD: superoxide dismutase; CAT: catalase; APX: aspartate peroxidase; GR: glutathione reductase. Treatments: Soil sampled in the Chinampas area was used as control (C); soil contami- nated with endosulfan (CE); control soil bioremediated with *Penicillium crustosum* (CPc); endosulfan- contaminated soil, bioremediated with *Piccustosum* (EPc); control soil bioremediated with citric waste (CCW); endosulfan-contaminated soil, bioremediated with citric waste (ECW). Values represent the means of five replicas (five individual plants) followed by SD. Different letters in each column indicate significant differences between treatments, according to the Tukey test at the 99% confidence level.

Treatment	SOD (U mg ⁻¹ prot)	CAT (U mg ⁻¹ prot)	APX (U mg ⁻¹ prot)	GR (U mg ⁻¹ prot)
С	36.9 ± 7.87 c	$10.6 \pm 1.59 \text{ b}$	$0.13\pm0.02~b$	$2.89 \pm 0.27 \text{ e}$
CE	46.5 ± 3.53 c	6.77 ± 1.41 a	0.02 ± 0.01 a	1.47 ± 0.13 b,c
CPc	26.7 ± 4.74 b	$6.05 \pm 1.04 \text{ a}$	$0.10\pm0.01~b$	1.20 ± 0.24 a
EPc	15.3 ± 1.99 a	7.34 ± 1.16 a	0.02 ± 0.01 a	$1.18 \pm 0.05 \text{ a,b}$
CCW	$44.4 \pm 4.08 \text{ c}$	8.33 ± 1.33 a,b	$0.13\pm0.03~b$	$1.67 \pm 0.18 \text{ c}$
ECW	24.1 ± 4.24 b	6.21 ± 0.61 a	0.04 ± 0.02 a	$2.19 \pm 0.11 \text{ d}$

Source: https://www.mdpi.com/2073-4395/11/6/1208

Potential use of Solanum lycopersicum and plant growth promoting rhizobacterial (PGPR) strains for the phytoremediation of endosulfan stressed soil. (2021)

Table 1: Treatments and code used in the pot study.

Treatments	Code
Soil without endosulfan	E ₀
Soil þ endosulfan (5 mg kg ⁻¹)	E_5
Soil þ endosulfan (10 mg kg ⁻¹)	E ₁₀
Soil þ endosulfan (25 mg kg ⁻¹)	E ₂₅
Soil þ endosulfan (50 mg kg ⁻¹)	E ₅₀

Table 2: Kinetic analysis of endosulfan degradation in S. lycopersicum grown in endosulfan amended soil.

Bacterial strains	Treatments	Rate constant (k) (d ⁻¹)	Half-life (T _{1/2}) (days)
Control (without inoculum)	E ₅	-0.0006	1155.0
	E ₁₀	-0.0004	1732.5
	E ₂₅	-0.0003	2310.0
	E ₅₀	-0.0003	2310.0
Bacillus sp. PRB77	E ₅	-0.0053	130.7
	E ₁₀	-0.0049	141.4
	E ₂₅	0.0047	147.4
	E ₅₀	-0.0042	165.0
Bacillus sp. PRB101	E ₅	-0.0166	41.7
	E ₁₀	-0.0140	49.5
	E ₂₅	-0.0132	52.5
	E ₅₀	-0.0114	60.7
Paenibacillus sp. IITISM08	E_5	-0.0035	198.0
	E ₁₀	-0.0032	216.5
	E ₂₅	-0.0029	238.9
	E ₅₀	-0.0025	277.2
Delftia lacustris IITISM30	E ₅	-0.0083	83.4
	E ₁₀	-0.0076	91.1
	E ₂₅	-0.0069	100.4
	E ₅₀	-0.0060	115.5
Klebsiella aerogenes	E ₅	-0.0121	57.2
IITISM42	E_{10}	-0.0110	63.0
	E ₂₅	-0.0100	69.3
	E ₅₀	-0.0090	77.0

Note: The details of the treatments containing soil with different concentrations of endosulfan are E_5 (5 mg kg⁻¹), E_{10} (10 mg kg⁻¹), E_{25} (25 mg kg⁻¹), E_{50} (50 mg kg⁻¹).

Plant tissue	Days	Treatments	M	alondialdel	hyde (MDA	mg kg ⁻¹)		
			Control	Bacillus	Bacillus	Paenibaci	Delftia	Klebsiella
				sp.	sp.	llus sp.	lacustris	aerogenes
D (40	F	0.00	PRB77	PRB101	IITISM08	IITISM30	IITISM42
Root	40 days	E_0	$0.98 \pm 0.2^{\text{Abcd}}$	0.65 ± 0.1^{Aab}	0.59 ± 0.3^{Ab}	0.75 ± 0.4^{Abc}	0.47 ± 0.2	0.31 ± 0.1
	2	E ₅	2.70 ±	2.31 ±	2.20 ±	2.54 ±	1.90 ± 0.3^{Aab}	$1.45 \pm 1.5^{\text{Aabc}}$
			2.7 ^{Aabcd}	0.7^{Aab}	1.1 ^{Aab}	1.5 ^{Aabc}	A -h	Art
		E_{10}	2.87 ± 0.8^{Aabcd}	2.62 ± 0.6^{Aab}	2.42 ± 0.7^{Aab}	$2.77 \pm 0.8^{\mathrm{Aabc}}$	2.17 ± 0.7^{Aab}	$2.00\pm0.4^{\text{Aab}}$
		E ₂₅	3.07 ± 0.9 ^{Aab}	2.81 ± 1.1 ^{Aa}	$\begin{array}{c} 2.67 \pm \\ 1.3^{\mathrm{Aab}} \end{array}$	3.06 ± 0.9^{Aabcd}	$2.50 \pm 0.9^{\text{Aab}}$	$2.27\pm0.6^{\rm Aa}$
		E ₅₀	3.41 ± 1.1 ^{Aabc}	3.14 ± 1.1^{Aa}	$\begin{array}{c} 2.96 \pm \\ 0.7^{\rm Aa} \end{array}$	$\begin{array}{c} 3.34 \pm \\ 1.2^{Aa} \end{array}$	2.80 ± 1.1^{Aa}	$2.51\pm0.9^{\text{Aa}}$
	80 days	E ₀	$\begin{array}{c} 0.78 \pm \\ 0.2^{\rm Acd} \end{array}$	$\begin{array}{c} 0.57 \pm \\ 0.2^{Ab} \end{array}$	$\begin{array}{c} 0.44 \pm \\ 0.2^{\mathrm{Ab}} \end{array}$	$\begin{array}{c} 0.58 \pm \\ 0.2^{\rm Ac} \end{array}$	0.36 ± 0.1^{Aab}	0.25 ± 0.1^{Abc}
		E ₅	$\begin{array}{c} 3.12 \pm \\ 0.9^{\text{Aabcd}} \end{array}$	2.11 ± 1.0 ^{Aab}	$\begin{array}{c} 1.97 \pm \\ 0.6^{\mathrm{Aab}} \end{array}$	$\begin{array}{c} 2.31 \pm \\ 1.2^{\text{Aabc}} \end{array}$	1.70 ± 1.2^{Aab}	1.31 ± 0.3^{Aabc}
		E ₁₀	3.37 ± 0.9^{Aabc}	$\begin{array}{c} 2.28 \pm \\ 0.6^{\mathrm{Aab}} \end{array}$	$2.17 \pm 0.9^{ m Aab}$	2.50 ± 1.2^{Aabc}	1.89 ± 1.0^{Aab}	$1.74 \pm 0.8^{\text{Aabc}}$
		E ₂₅	$\begin{array}{c} 3.60 \pm \\ 0.5^{\mathrm{Aab}} \end{array}$	$\begin{array}{c} 2.48 \pm \\ 1.4^{\mathrm{Aab}} \end{array}$	2.37 ± 1.2 ^{Aab}	2.69 ± 1.3^{Aabc}	2.19 ± 0.7^{Aab}	2.06 ± 0.9^{Aab}
		E ₅₀	3.83 ± 1.1 ^{Aa}	2.73 ± 0.4 ^{Aab}	$\begin{array}{c} 2.64 \pm \\ 0.4^{\mathrm{Aab}} \end{array}$	$2.86 \pm 0.5^{ m Aabc}$	2.48 ± 1.7^{Aab}	$2.28 \pm 1.0^{\text{Aa}}$
	120 days	E ₀	$\begin{array}{c} 0.58 \pm \\ 0.2^{\mathrm{Ad}} \end{array}$	$\begin{array}{c} 0.40 \pm \\ 0.2^{Ab} \end{array}$	$\begin{array}{c} 0.35 \pm \\ 0.3^{Ab} \end{array}$	$\begin{array}{c} 0.45 \pm \\ 0.1^{\rm Ac} \end{array}$	0.31 ± 0.1^{Ab}	0.12 ± 0.3^{Ac}
	Ţ	E ₅	$3.46 \pm 0.9^{\text{Aabc}}$	1.94 ± 0.1^{ABab}	$1.63 \pm 0.5^{\mathrm{Bab}}$	$\begin{array}{c} 2.18 \pm \\ 1.0^{\mathrm{ABabc}} \end{array}$	$1.40\pm0.1^{\text{Bab}}$	$1.18 \pm 1.0^{\text{Babc}}$
		E ₁₀	3.91 ± 0.9 ^{Aa}	$\begin{array}{c} 2.05 \pm \\ 1.0^{\mathrm{ABab}} \end{array}$	$\begin{array}{c} 1.97 \pm \\ 0.4^{\mathrm{ABab}} \end{array}$	$\begin{array}{c} 2.25 \pm \\ 0.7^{ABabc} \end{array}$	1.69 ± 0.8^{Bab}	$1.45\pm0.4^{\text{Babc}}$
		E ₂₅	$\begin{array}{c} 4.08 \pm \\ 1.0^{\text{Aa}} \end{array}$	$\begin{array}{c} 2.27 \pm \\ 0.9^{ABab} \end{array}$	$\begin{array}{c} 2.12 \pm \\ 0.3^{ABab} \end{array}$	2.54 ± 0.5^{ABabc}	1.96 ± 0.9^{ABab}	$1.82 \pm 0.8^{\text{Babc}}$
		E ₅₀	$\begin{array}{c} 4.28 \pm \\ 0.9^{Aa} \end{array}$	$\begin{array}{c} 2.47 \pm \\ 1.1^{\mathrm{Aab}} \end{array}$	$\begin{array}{c} 2.29 \pm \\ 1.8^{\text{Aab}} \end{array}$	2.72 ± 1.1^{Aabc}	2.19 ± 1.6^{Aab}	$1.99 \pm 1.2^{\operatorname{Aab}}$
Leaves	40 days	E ₀	$\begin{array}{c} 0.78 \pm \\ 0.1^{Ab} \end{array}$	$\begin{array}{c} 0.64 \pm \\ 0.2^{\mathrm{Ab}} \end{array}$	$\begin{array}{c} 0.62 \pm \\ 0.2^{\mathrm{Aa}} \end{array}$	$\begin{array}{c} 0.66 \pm \\ 0.3^{\mathrm{Ab}} \end{array}$	0.57 ± 0.4^{Aa}	$0.56 \pm 0.2^{\mathrm{Aa}}$
		E ₅	1.61 ± 0.6^{Aab}	1.51 ± 0.4^{Aab}	1.25 ± 0.2 ^{Aa}	1.55 ± 0.3 ^{Aab}	$1.09\pm0.8^{\mathrm{Aa}}$	0.97 ± 0.3^{Aa}
		E ₁₀	$\begin{array}{c} 1.84 \pm \\ 0.8^{\mathrm{Aab}} \end{array}$	1.66 ± 0.2 ^{Aab}	$1.55 \pm 0.4^{\rm Aa}$	$\begin{array}{c} 1.74 \pm \\ 0.6^{\mathrm{Aab}} \end{array}$	1.46 ± 0.4^{Aa}	1.28 ± 0.4^{Aa}
		E ₂₅	$\begin{array}{c} 2.14 \pm \\ 0.3^{Aab} \end{array}$	1.98 ± 0.3 ^{Aab}	1.82 ± 0.3 ^{Aa}	$\begin{array}{c} 2.13 \pm \\ 0.2^{\mathrm{Aab}} \end{array}$	1.71 ± 0.4^{Aa}	1.51 ± 0.6^{Aa}
		E ₅₀	$\begin{array}{c} 2.55 \pm \\ 0.4^{Aab} \end{array}$	$\begin{array}{c} 2.33 \pm \\ 0.3^{\text{Aa}} \end{array}$	$\begin{array}{c} 2.12 \pm \\ 0.6^{\mathrm{Aa}} \end{array}$	$\begin{array}{c} 2.34 \pm \\ 0.5^{\mathrm{Aa}} \end{array}$	1.91 ± 0.2^{Aa}	1.84 ± 0.8^{Aa}
	80 days	E ₀	$\begin{array}{c} 1.05 \pm \\ 0.6^{\mathrm{Aab}} \end{array}$	$\begin{array}{c} 0.80 \pm \\ 0.4^{Ab} \end{array}$	$\begin{array}{c} 0.66 \pm \\ 0.2^{\rm Aa} \end{array}$	$\begin{array}{c} 0.90 \pm \\ 0.3^{Ab} \end{array}$	0.65 ± 0.3^{Aa}	0.63 ± 0.3^{Aa}
		E ₅	$\begin{array}{c} 1.91 \pm \\ 0.5^{\mathrm{Aab}} \end{array}$	1.29 ± 0.4^{Aab}	$1.09 \pm 0.7^{\rm Aa}$	$1.41 \pm 0.1^{Aab \ 1}$	1.01 ± 0.1^{Aa}	0.80 ± 0.5^{Aa}
		E ₁₀	$\begin{array}{c} 2.20 \pm \\ 0.2^{\mathrm{Aab}} \end{array}$	$\begin{array}{c} 1.43 \pm \\ 0.5^{\mathrm{Aab}} \end{array}$	$\begin{array}{c} 1.32 \pm \\ 0.3^{\rm Aa} \end{array}$	1.56 ± 1.0 ^{Aab 1}	1.21 ± 0.6^{Aa}	1.04 ± 0.3^{Aa}
		E ₂₅	2.44 ±	1.70 ±	1.45 ±	1.79 ±	$1.29\pm0.8^{\rm Aa}$	$1.16\pm0.5^{\mathrm{Aa}}$

Table 3: Malondialdehyde production by S. lycopersicum under endosulfan stress.

			0.9^{Aab}	0.7^{Aab}	0.4^{Aa}	0.4^{Aab}		
		E ₅₀	$\begin{array}{c} 2.69 \pm \\ 0.5^{\text{Aab}} \end{array}$	1.99 ± 0.9^{Aab}	1.72 ± 0.7 ^{Aa}	$\begin{array}{c} 2.05 \pm \\ 0.3^{\mathrm{Aab}} \end{array}$	1.39 ± 0.2^{Aa}	1.27 ± 0.4^{Aa}
	120 days	E ₀	$\begin{array}{c} 1.26 \pm \\ 0.9^{\text{Aab}} \end{array}$	$\begin{array}{c} 0.95 \pm \\ 0.1^{Aab} \end{array}$	$\begin{array}{c} 0.87 \pm \\ 0.2^{\rm Aa} \end{array}$	1.07 ± 0.6 ^{Aab}	$0.72 \pm 0.1^{\rm A}$	0.61 ± 0.3^{Aa}
		E ₅	$\begin{array}{c} 2.24 \pm \\ 0.7^{\text{Aab}} \end{array}$	$\begin{array}{c} 1.00 \pm \\ 0.2^{\text{Bab}} \end{array}$	$\begin{array}{c} 0.89 \pm \\ 0.7^{\mathrm{Ba}} \end{array}$	$\begin{array}{c} 1.14 \pm \\ 0.3^{\mathrm{ABab}} \end{array}$	$0.85 \pm 0.6^{\mathrm{Ba}}$	$0.76\pm0.3^{\mathrm{Ba}}$
		E ₁₀	$\begin{array}{c} 2.52 \pm \\ 0.7^{\mathrm{Aab}} \end{array}$	$\begin{array}{c} 1.18 \pm \\ 0.8^{\mathrm{Aab}} \end{array}$	$\begin{array}{c} 0.89 \pm \\ 0.5^{\mathrm{Aa}} \end{array}$	1.33 ± 0.6 ^{Aab}	0.94 ± 0.3^{Aa}	0.91 ± 0.6^{Aa}
		E ₂₅	$\begin{array}{c} 2.76 \pm \\ 0.6^{\text{Aab}} \end{array}$	$\begin{array}{c} 1.37 \pm \\ 0.3^{ABab} \end{array}$	$\begin{array}{c} 1.30 \pm \\ 0.6^{\mathrm{Ba}} \end{array}$	$\begin{array}{c} 1.46 \pm \\ 0.5^{\mathrm{ABab}} \end{array}$	$1.13 \pm 0.4^{\text{Ba}}$	$0.96 \pm 0.2^{\text{Ba}}$
		E ₅₀	$\frac{3.06}{0.9^{Aa}}\pm$	$\begin{array}{c} 1.52 \pm \\ 0.2^{\mathrm{ABab}} \end{array}$	1.44 ± 0.7^{ABa}	1.72 ± 0.6 ^{ABab}	1.27 ± 0.5^{ABa}	$1.15\pm0.5^{\mathrm{Ba}}$

Note: The details of the treatments containing soil with different concentrations of endosulfan are E_5 (5 mg kg⁻¹), E_{10} (10 mg kg⁻¹), E_{25} (25 mg kg⁻¹), E_{50} (50 mg kg⁻¹). Each value is a mean of three replicates. Lower case letters indicate statistically significant differences (p < 0.05) between different treatments by similar inoculation of bacterial strains; upper case letters indicate statistically significant differences (p < 0.05) between differences (p < 0.05) between differences (p < 0.05) between different inoculations of bacterial strains within a treatment according to one way analysis of variance (ANOVA) followed by Tukey's HSD post hoc test.

Plant	Trea	Bacte	erial s	trains															
growth	tmen	Cont	rol		PRB	77		PRB	101		IITI	SM08		IITI	SM30		IITIS	SM42	
parame ter	15	Days	after	sowin	g														
		40	80	120	40	80	120	40	80	120	40	80	120	40	80	120	40	80	120
Root length (%GI)	E ₅	40.4	44.6	49.3	20.7	22.6	24.7	7.1	9.8	12.8	12.0	16.4	21.2	12.0	16.4	21.2	10.9	13.0	15.7
	E10	50.0	53.8	56.6	43.3	46.6	48.3	15.7	16.4	18.8	27.5	29.1	32.3	27.5	29.1	32.3	18.7	20.2	23.1
	E25	59.5	61.5	63.8	54.7	56.0	58.0	25.7	28.5	30.7	37.9	41.7	43.4	37.9	41.7	43.4	31.2	33.3	35.1
	E50	71.4	73.8	75.9	71.6	72.0	73.1	37.1	38.4	40.1	51.7	55.6	57.5	51.7	55.6	57.5	45.3	47.6	49.0
Shoot length (%GI)	\mathbf{E}_5	25.3	28.5	32.0	16.2	19.6	24.2	5.4	9.8	15.5	10.4	14.5	7.7	10.4	14.5	7.7	8.3	10.4	15.3
	E10	38.5	41.7	44.0	30.6	35.6	39.8	10.1	14.9	19.5	15.3	20.0	18.7	15.3	20.0	18.7	10.6	15.7	19.7
	E25	53.0	56.0	59.0	40.5	44.6	51.4	20.2	25.2	29.0	27.4	31.5	24.8	27.4	31.5	24.8	24.2	28.2	32.2
	E50	67.4	70.3	73.0	55.8	60.6	64.1	26.3	31.6	35.8	35.4	39.3	36.7	35.4	39.3	36.7	29.5	34.5	39.5
Root weight (%GI)	\mathbf{E}_5	30.6	33.6	38.0	25.7	28.3	32.9	11.4	14.4	17.6	21.7	24.6	27.3	21.7	24.6	27.3	16.5	19.5	25.1
	E10	44.3	48.2	53.7	37.3	39.7	45.4	20.7	24.3	28.0	32.1	36.5	40.2	32.1	36.5	40.2	26.7	31.1	35.0
	E25	59.3	62.3	65.7	50.2	53.7	57.3	32.8	35.5	41.4	40.8	45.2	49.6	40.8	45.2	49.6	37.0	42.7	47.6
	E50	75.0	79.3	83.8	64.7	67.3	70.1	50.0	54.6	58.5	61.7	68.2	73.3	61.7	68.2	73.3	57.4	65.9	69.5
Shoot weight (%GI)	\mathbf{E}_{5}	30.6	33.6	38.0	25.7	28.3	32.9	16.1	20.6	25.3	22.3	25.2	29.3	22.3	25.2	29.3	19.6	25.0	31.8
	E10	44.3	48.2	53.7	37.3	39.7	45.4	26. 8	31.9	35.8	34.5	37.5	42.1	34.5	37.5	42.1	30.0	34.8	39.3
	E25	59.3	62.3	65.7	50.2	53.7	57.3	39. 0	42.1	47.5	46.0	49.5	53.2	46.0	49.5	53.2	42.0	46.2	49.8
	E50	75.0	79.3	83.8	64.7	67.3	70.1	51. 2	54.5	58.2	59.1	62.4	66.0	59.1	62.4	66.0	55.6	60.4	65.0
Chlorop hyll content	E ₅	45.0	48.9	50.3	29.3	32.5	38.1	9.6	12.9	13.5	14.6	16.0	18.5	14.6	16.0	18.5	11.2	14.4	16.9

Table 4: Effect of endosulfan and PGPR strains inoculation on root length, shoot length, root weight, shoot weight, chlorophyll content and protein content of *S. lycopersicum*.

(%GI)																			
	E10	54.9	56.1	59.0	46.5	48.4	51.2	17.7	18.7	22.2	23.1	26.4	28.1	23.1	26.4	28.1	20.5	23.2	25.4
	E25	66.1	69.3	73.2	60.3	62.8	64.3	36.2	40.2	43.2	41.4	45.2	48.8	41.4	45.2	48.8	40.1	44.0	47.0
	E50	78.8	80.6	82.6	68.9	72.7	75.6	49.1	57.5	63.5	52.4	56.6	62.2	52.4	56.6	62.2	50.4	59.2	65.3
Protein content (%GI)	\mathbf{E}_5	34.2	36.6	40.5	27.4	29.0	33.6	5.3	8.2	10.0	15.1	17.6	20.8	15.1	17.6	20.8	9.5	12.3	14.6
	E10	39.8	44.8	50.4	41.4	38.8	42.8	15.5	18.8	21.6	20.9	23.7	25.4	20.9	23.7	25.4	18.0	21.9	23.2
	E25	49.0	53.3	59.9	50.3	50.9	53.1	24.2	27.4	29.3	31.5	32.7	35.8	31.5	32.7	35.8	27.3	31.4	31.9
	E50	66.0	69.7	72.3	59.1	60.7	64.0	28.2	33.0	37.5	37.6	43.9	48.3	37.6	43.9	48.3	32.6	35.5	42.5

Note: The details of the treatments containing soil with different concentrations of endosulfan are E_5 (5 mg kg⁻¹), E_{10} (10 mg kg⁻¹), E_{25} (25 mg kg⁻¹), E_{50} (50 mg kg⁻¹).

% GI (Growth inhibition) $\frac{1}{4}$ 100 * (P_c - P_t)/P_c (where P_c and P_t were the root length, shoot length, root dry weight or shoot dry weight or chlorophyll pigment or protein content of S. lycopersicum for control (E₀; endosulfan non-spiked soil) and treatments (E_5 , E_{10} , E_{25} , and E_{50}) respectively).

S. lycopersicum planted in endosulfan unamended soil (E_0) , 100% corresponds to.

4.2 cm (Control), 5.3 cm (PRB77), 7.0 cm (PRB101), 4.8 cm (IITISM08), 5.8 cm (IITISM30) and 6.4 cm (IITISM42) for root length at 40 days.

6.5 cm (Control), 7.5 cm (PRB77), 9.1 cm (PRB101), 7.0 cm (IITISM08), 7.9 cm (IITISM30) and 8.4 cm (IITISM42) for root length at 80 days.

8.3 cm (Control), 9.3 cm (PRB77), 11.7 cm (PRB101), 8.8 cm (IITISM08), 9.9 cm (IITISM30) and 10.8 cm (IITISM42) for root length at 120 days.

8.3 cm (Control), 11.1 cm (PRB77), 14.8 cm (PRB101), 9.9 cm (IITISM08), 12.4 cm (IITISM30) and 13.2 cm (IITISM42) for shoot length at 40 days.

9.1 cm (Control), 13.2 cm (PRB77), 23.4 cm (PRB101), 12.7 cm (IITISM08), 16.5 cm (IITISM30) and 19.1 cm (IITISM42) for shoot length at 80 days.

10.0 cm (Control), 17.3 cm (PRB77), 29.6 cm (PRB101), 14.6 cm (IITISM08), 20.0 cm (IITISM30) and 24.8 cm (IITISM42) for shoot length at 120 days.

0.77 g (Control), 0.99 g (PRB77), 1.40 g (PRB101), 0.86 g (IITISM08), 1.15 g (IITISM30) and 1.27 g (IITISM42) for root weight at 40 days.

0.90 g (Control), 1.12 g (PRB77), 1.52 g (PRB101), 1.04 g (IITISM08), 1.26 g (IITISM30) and 1.38 g (IITISM42) for root weight at 80 days.

1.09 g (Control), 1.28 g (PRB77), 1.64 g (PRB101), 1.19 g (IITISM08), 1.39 g (IITISM30) and 1.51 g (IITISM42) for root weight at 120 days.

1.60 g (Control), 2.41 g (PRB77), 3.28 g (PRB101), 2.02 g (IITISM08), 2.69 g (IITISM30) and 3.00 g (IITISM42) for shoot weight at 40 days.

1.99 g (Control), 2.79 g (PRB77), 3.63 (PRB101), 2.40 g (IITISM08), 3.09 g (IITISM30) and 3.44 g (IITISM42) for shoot weight at 80 days.

2.42 g (Control), 3.28 g (PRB77), 4.02 g (PRB101) 2.77 g (IITISM08), 3.51 g (IITISM30) and 3.89 g (IITISM42) for shoot weight at 120 days.

 0.71 mg g^{-1} (Control), 1.16 mg g^{-1} (PRB77), 1.24 mg g^{-1} (PRB101), 0.97 mg g^{-1} (IITISM08), 0.82 mg^{-1} g^{-1} (IITISM30) and 1.07 mg g^{-1} (IITISM42) for chlorophyll content at 40 days.

0.98 mg g⁻¹ (Control), 1.32 mg g⁻¹ (PRB77), 1.39 mg g⁻¹ (PRB101), 1.14 mg g⁻¹ (IITISM08), 1.06 mg g⁻¹ (IITISM30) and 1.25 mg g⁻¹ (IITISM42) for chlorophyll content at 80 days. 1.27 mg g⁻¹ (Control), 1.60 mg g⁻¹ (PRB77), 1.62 mg g⁻¹ (PRB101), 1.44 mg g⁻¹ (IITISM08), 1.35 mg

1.27 mg g⁻¹ (Control), 1.60 mg g⁻¹ (PRB77), 1.62 mg g⁻¹ (PRB101), 1.44 mg g⁻¹ (IITISM08), 1.35 mg g⁻¹ (IITISM30) and 1.53 mg g⁻¹ (IITISM42) for chlorophyll content at 120 days. 10.1 mg g⁻¹ (Control), 13.14 mg g⁻¹ (PRB77), 15.27 mg g⁻¹ (PRB101), 12.89 mg g⁻¹ (IITISM08), 10.76 mg g⁻¹ (IITISM30) and 12.19 mg g⁻¹ (IITISM42) for protein content at 40 days. 14.93 mg g⁻¹ (Control), 18.11 mg g⁻¹ (PRB77), 19.28 mg g⁻¹ (PRB101), 17.33 mg g⁻¹ (IITISM08), 15.27 mg g⁻¹ (IITISM30) and 16.64 mg g⁻¹ (IITISM42) for protein content at 80 days. 20.11 mg g⁻¹ (Control), 24.52 mg g⁻¹ (PRB77), 25.46 mg g⁻¹ (PRB101), 23.96 mg g⁻¹ (IITISM08), 21.46 mg g⁻¹ (IITISM30) and 22.99 mg g⁻¹ (IITISM42) for protein content at 120 days.

Source: https://www.sciencedirect.com/science/article/abs/pii/S0045653521010602

Mycoremediation of an agricultural salty soil contaminated with endosulfan by *Penicillium crustosum*: and agronomic bioassays with *Phaseolus leptostachyus* (2021)

Day	$ST (mN m^{-1})$	E ₂₄ (%)
7	68 ± 0.47	9±0.16
14	64 ± 0.47	17 ± 0
21	70 ± 0	0
30	67 ± 0.47	0

Table 1: Evaluation of surface active agent properties in FBR extracts.

Values are means (n=3) with standard deviation; ST = Surface Tension; E₂₄: Emulsifying activity.

Table 2: Physicochemical characterization of soil according to Mexican Norm NMX-021.

Characteristics	Control	FBR
pH	7.4 ± 0.8^{b}	$6.8\pm0.6^{\mathrm{a}}$
Conductivity (dS m ⁻¹)	27 ± 2.4^{b}	$8\pm1.2^{\mathrm{a}}$
Humidity (%)	91 ± 5.43^{b}	$86\pm0.75^{\mathrm{a}}$
C organic (%)	12 ± 0.15^{a}	23 ± 0.83^{b}
Organic matter (%)	22 ± 0.25^{a}	$40 \pm 1.43^{\mathrm{b}}$
Total nitrogen (%)	$0.8\pm0.06^{\rm b}$	$0.4\pm0.02^{\mathrm{a}}$
Phosphorus (mg kg ⁻¹)	11 ± 0.53^{a}	41 ± 2.1^{b}
Sand (%)	33 ± 2.3^{a}	37 ± 1.5^{b}
Clay (%)	36 ± 0.3^{b}	32 ± 0.7^{a}
Silt (%)	31 ± 2^{a}	31 ± 1.2^{a}

Sampling at 15 cm depth. Values shown are the means (n = 3) with standard deviation of every parameter. Same letters indicate there are no significant statistical difference with LSD test ($\alpha = 0.05$). FBR = Fungal bioremediation treatment.

Table 3: Agronomic assays of *Phaseolus leptostachyus* seeds.

Parameter	Control	Endosulfan	FBR
Germination index (%)	87 ± 12.5^{b}	67 ± 4.30^{a}	93 ± 11.46^{b}
Root length (cm)	$7.4 \pm 1.27^{\mathrm{b}}$	5 ± 0.16^{a}	$6.9 \pm 1.56^{\mathrm{b}}$
Aerial length (cm)	$18.6\pm2.97^{\rm a}$	19.4 ± 1.49^{ab}	$21.5\pm2.04^{\text{b}}$
Number of leaves	8 ± 2^{a}	10 ± 1^{b}	8 ± 3^{a}
Root dry weight (g)	$0.5\pm0.15^{\mathrm{b}}$	$0.3 \pm .007^{a}$	$0.5\pm0.15^{ m b}$
Aerial dry part weight	$1.8\pm0.56^{\text{b}}$	$1.5\pm0.47^{\rm a}$	$1.8\pm0.47^{\rm b}$
(g)			
Proline (mmol DW ⁻¹)	15 ± 0.64^{b}	$19 \pm 0.2^{\circ}$	6 ± 0.44^{a}

Seeds were germinated for 1 month in a greenhouse, at an average Temperature = 25 °C, Moisture content = 46%. Values are the means (n = 5) with standard deviation of every parameter. Same letters indicate no significant statistical difference with LSD test (α = 0.05).

FBR = Fungal bioremediation treatment.

Source: https://www.tandfonline.com/doi/full/10.1080/03601234.2021.1962167

Bioremediation of an agricultural saline soil contaminated with endosulfan and *Escherichia coli* by an active surface agent induced in a *Penicillium crustosum* culture (2021)

Microorganism	Removal(%)	Time (days)	References
Mortierella sp.	70 Endosulfan a 50 Endosulfan b	28	[3]
Co-culture and Surfactin	75 Endosulfan a 68 Endosulfan b	20	[42]
Bacillus sp.	81.6	30	[44]
Penicillium sp.	80	30	
Tramete shirsuta	100	15	[45]
Cladosporium cladosporioides	96.87	16	[45]
Trametes versicolor	90.96	15	[45]
Penicillium frequentans	90.80	15	[45]

Table 2: Culture conditions used in the Taguchi L9 experimental design for BASA production.

Levels	1	2	3
Carbon source	Soybean oil	Glucose	CsP
Nitrogen source	NH ₄ NO ₃	KNO ₃	Peptone
рН	3	5	7
Agitation speed (rpm)	100	120	150

C/N ratio: 20; CsP: Citrus sinensis peel.

Table 3: Matrix of Taguchi L9 experimental design and results.

Cultures	Carbon	Nitrogen	Agitation	pН	ST(6 days) (mN m ⁻¹)	E24 (12 days)(%)
	source	source	(rpm)			
1	Soybean oil	Peptone	100	3	45.2 ± 1.5	0.0 ± 0.0
2	Soybean oil	NH ₄ NO ₃	120	5	42.3 ± 0.3	40.5 ± 0.0
3	Soybean oil	KNO ₃	150	7	45.3 ± 1.0	7.1 ± 0.0
4	Glucose	Peptone	120	7	41.9 ± 0.6	7.14 ± 0.0
5	Glucose	NH ₄ NO ₃	150	3	48.3 ± 0.5	29.5 ± 0.1
6	Glucose	KNO ₃	100	5	38.7 ± 0.5	14.0 ± 0.1
7	CsP	Peptone	150	5	46.7 ± 0.2	7.9 ± 0.1
8	CsP	NH ₄ NO ₃	100	7	55.8 ± 0.3	43.8 ± 0.1
9	CsP	KNO ₃	120	3	43.4 ± 0.1	11.1 ± 0.2

Growth temperature: 30 °C; C/N ratio: 20; CsP: Citrus sinensis peel; ST: Surface tension; E_{24} : Emulsifying activity at 24 h; means values with SD (n=3).

Table 4: Analysis of variances on Taguchi L9 experimental design for variable response E₂₄.

	Ss	Df	MS	F	р
C source	203.34	2	101.67	12.31	0.0004
N source	5006.88	2	2503.44	303.11	0.00001
Agitation speed	92.17	2	46.08	5.58	0.01
рН	198.21	2	99.117	11.99	0.0005
Residuals	148.66	18	8.26		

Table 5: Analysis of variances on Taguchi L9 experimental design for variable response ST.

	Ss	Df	MS	F	р
C source	218.58	2	109.29	190.03	< 0.0001
N source	189.24	2	94.62	164.53	< 0.0001
Agitation speed	112.23	2	56.11	97.57	< 0.0001
рН	94.85	2	47.43	82.47	< 0.0001
Residuals	10.35	18	0.58		

SS: Sum of squares; DF: degrees of freedom; F: statistical value; p: calculated value.

Table 6: Soil physicochemical characterization.

Characteristics	Values
рН	7.4 ± 0.8
Electric conductivity (dS m ¹)	27.2 ± 2.4
Humidity (%)	90.7 ± 5.4
Organic carbon (%)	12.5 ± 0.2
Organic matter (%)	21.6 ± 0.3
Total nitrogen (%)	0.8 ± 0.1
Soluble phosphorus (mg kg ¹)	10.7 ± 0.5
C/N ratio	15.6
Sand (%)	33.0 ± 2.3
Clay (%)	36.2 ± 0.3
Silt (%)	30.7 ± 2.0
Soil classification	Clay loam soil

Means values with SD (n=3).

Table 7: Tensoactive and emulsifying activities induced in the FBR system.

Day	ST (mN m ¹)	E _{24 (%)}
0	0	0
7	67.7 ± 0.5	8.9 ± 0.2
14	64.3 ± 0.5	16.7 ± 0
30	67.3 ± 0.5	0

ST: Surface Tension; E_{24} : Emulsifying activity with diesel at 24 h. Means values with SD (n = 3).

Source: https://www.tandfonline.com/doi/full/10.1080/10826068.2021.1941104

Accumulation characteristics of endosulfan soil residues in soybean and reduction in their phytoavailability by treatment with powdered activated carbon (2020)

Table 1: Endosulfan (ED) removal efficiencies from soils planted with soybean plants ($R_{soybean}$) and inhibition of uptake (I_{uptake}) associated with powdered activated carbon (PAC) amendment.

Target	Treatment ^a	$R_{\rm soybean}$ (%) ^b			I _{uptake} (%) ^c			
		Days after soybean planting			Days afte	er PAC ame	endment	
		10	20	30	10	20	30	
Total ED	LC	52.8	52.8	15.7	0	100	89.4	
	НС	27.3	25.8	12.0	95.4	100	99.2	

^aLC = low concentration treatment (0.3 mg kg soil⁻¹); HC = high concentration treatment (3.0 mg kg soil⁻¹)

 ${}^{b}R_{soybean}$ = proportion of total ED residues removed from soils by the actions of plants only, except for the proportion removed in unplanted soils

 ${}^{c}I_{uptake}$ = percent difference between concentrations of total ED residues sorbed by soybean plants with or without PAC amended soils

Source: https://link.springer.com/article/10.1007/s11356-020-08596-5

Removal of endosulfan in a sequencing batch reactor: addition of granular activated carbon as improvement strategy (2020)

Table 1: Removal efficiencies of conventional parameters during three operation stages of the GAC-SBR system

Parameter	Influent (mg/L)	Effluent (mg/L)		Removal (%)
Stage I – Sta	bilization			
COD	496 ± 6	76 ± 25		85 ± 5
NH4 ⁺ -N	123 ± 4	NH4 ⁺ -N	61 ± 7	44 ± 6
		NO ₃ ⁻ N	7 ± 1	
		NO ₂ -N	0 ± 0	
PO ₄ - ³ -P	7 ± 0	7 ± 0		5 ± 3
Stage II – en	dosulfan			
COD	497 ± 3	75 ± 20		85 ± 4
NH_4^+-N	121 ± 2	NH4 ⁺ -N	53 ± 9	48 ± 8
		NO ₃ -N	10 ± 4	
		NO ₂ -N	0 ± 0	
$PO_4^{-3}-P$	7 ± 0	7 ± 0		8 ± 4
Stage III - er	ndosulfan + GAC			
COD	500 ± 4	21 ± 8		96 ± 2
NH_4^+-N	120 ± 2	NH ₄ ⁺ -N	16 ± 1	72 ± 1
		NO ₃ -N	17 ± 1	
		NO ₂ -N	0 ± 0	
$PO_4^{-3}-P$	8 ± 0	4 ± 1		48 ± 13

Table 2: Two-way ANOVA test to compare the effect of DI100 treatments ($20 \text{ mg L}^{-1} \text{ ZnSO}_4$) on biomass and Zn bioaccumulation in the SP-K20 clone after 6 days of the treatment (66^{th} day).

Source	Sum of squares	Degree of freedom	Mean squares	<i>F</i> - value	Probability	Signification
Biomass						
A:DI ₁₀₀	78.23	1	78.2287	136.13	0.0000	***
treatments						
B:Time	29.64	1	29.637	51.57	0.0000	***
AB	17.12	1	17.1197	29.79	0.0000	***
Error	11.49	20	0.574677			
Total (Corr.)	136.48	23				
Zn bioaccumulation	Ì					
A: DI ₁₀₀	8.27E7	1	8.27E7	477.35	0.0000	***
treatments						
B:Time	1.54E7	1	1.54E7	88.71	0.0000	***
AB	8.84E6	1	8.84E6	51.02	0.0000	***
Error	3.46E6	20	1.73E5			
Total (Corr.)	1.10E8	23				

The differences were considered significant at p = 0.01-0.05 (*); highly significant at p = 0.001-0.01 (**); and very highly significant at $p \le 0.001$ (***).

Source: https://www.tandfonline.com/doi/full/10.1080/15226514.2019.1708862

Potential of water lettuce (*Pistia stratiotes L.*) for phytoremediation: physiological responses and kinetics of zinc uptake (2020)

Table 1:	Zn contents	in the roots an	d shoots in	water	lettuce (1	Pistia s	stratiotes I	L.) subjected	l to o	different
treatmer	its and culture	e times.								

Initial Conc.	Metal content in the biomass (mg kg^{-1})									
$(mg L^{-1})$		24 h	48 h	72 h	168 h					
0.7	Root	0.69 ± 0.117	0.73 ± 0.041	0.75 ± 0.136	1.20 ± 0.159					
	Shoot	0.17 ± 0.021	0.17 ± 0.011	0.16 ± 0.016	0.40 ± 0.032					
1.8	Root	5.96 ± 6.246	6.79 ± 6.795	8.57 ± 8.891	7.66 ± 7.659					
	Shoot	0.44 ± 0.022	0.50 ± 0.024	0.65 ± 0.032	1.01 ± 0.015					
18.0	Root	23.26 ± 0.708	28.19 ± 1.025	32.75 ± 2.536	46.00 ± 0.979					
	Shoot	1.41 ± 0.169	2.40 ± 0.281	2.56 ± 0.092	7.29 ± 0.218					
180.0	Root	88.03 ± 0.838	118.21 ± 0.693	105.12 ± 0.397	167.82 ± 0.365					
	Shoot	1.41 ± 0.083	5.80 ± 0.021	8.16 ± 0.021	21.58 ± 0.021					

Table 2: Percentage Zn removal expressed according to the dry biomass (g) of water lettuce plants subjected to increasing doses of contamination at different culture times.

Initial Conc. (mg.L ⁻¹)		% Zn removal from the solution							
		24 h	48 h	72 h	168 h				
0.7	Root	14.2 ± 1.072	12.0 ± 0.505	16.2 ± 0.315	23.9 ± 0.885				
	Shoot	9.6 ± 0.068	9.3 ± 0.265	9.7 ± 0.235	20.4 ± 1.098				
	Total	23.8 ± 1.140	21.3 ± 0.504	25.9 ± 0.160	44.3 ± 2.211				
1.8	Root	33.1 ± 0.904	40.1 ± 0.981	48.0 ± 2.307	53.7 ± 0.119				
	Shoot	4.8 ± 0.022	6.8 ± 0.066	9.2 ± 0.107	18.0 ± 0.702				
	Total	37.8 ± 1.853	46.9 ± 0.956	57.2 ± 3.873	71.7 ± 0.767				
18.0	Root	14.6 ± 0.378	15.6 ± 0.027	14.9 ± 0.727	28.2 ± 0.474				
	Shoot	1.6 ± 0.025	3.5 ± 0.224	4.6 ± 0.087	9.6 ± 0.297				
	Total	16.2 ± 0.353	19.1 ± 0.248	19.5 ± 1.234	37.8 ± 0.301				
180.0	Root	4.2 ± 0.066	5.4 ± 0.066	3.6 ± 0.113	6.8 ± 0.053				
	Shoot	0.6 ± 0.030	0.7 ± 0.045	1.4 ± 0.054	2.4 ± 0.095				
	Total	4.8 ± 0.095	6.1 ± 0.164	5.0 ± 0.079	9.2 ± 0.096				

Average of three repetitions \pm standard deviation.

Table 3. Chlorophyll a (Chl a). chlorophyll b (Chlb). total chlorophyll (C total). and carotenoid (Cx + c) contents. the Cha/Chb ratio. Ctotal/Cx + c ratio and the FCI in water lettuce leaves (Pistia stratiotes L.) subjected to increasing doses of Zn at different culture times.

Depende nt Variable	Independent Variable	Regression models	Reg	ression (coefficien	it
As _{Root}	As _{Soil} , pH, EC, OM, CEC, Al%, Fe%	$\begin{array}{l} Y_1 = -1.412 + 0.025 \times As^{**} + 0.493 \times pH^* \\ + 0.018 \times EC + 0.135 \\ \times OM^{**} - 0.095 \times CEC - 1.331 \times Al\% \ ^* + \\ 1.63 \times Fe\%^* \end{array}$	0.9 6	0.945	64.975	0.000 1
As _{Straw}	As _{Soil,} pH, EC, OM, CEC, Al%, Fe%	$\begin{array}{l} Y2 \ = 0.738 + 0.004 \times As_{Soil}{}^{**} - 0.134 \times \\ pH + 0.005 \times EC + 0.06 \ \times \\ OM + 0.013 \times CEC - 0.38 \times Al\% \ {}^{*} + 0.352 \times \\ Fe\% {}^{*} \end{array}$	0.9 53	0.936	55.59	0.000 1

As _{Grain}	As _{Soil} , pH, EC, OM, CEC, Al%, Fe%	Y3 = $0.554 + 0.003 \times As$ ** - $0.127 \times$ pH + $0.004 \times EC + 0.055 \times$ OM + $0.004 \times CEC - 0.246 \times Al\%^* + 0.195 \times$	0.9 4	0.918	42.415	0.000 1
		Fe%				

Average of three repetitions \pm standard deviation.

*Chl a/Chl b = ratio between chlorophyll a and chlorophyll b contents.

*Ctotal/Cx + c = ratio between total chlorophyll (chlorophyll a + b) and carotenoid contents.

*FCI: Falker chlorophyll index.

Table 4: Kinetic parameters of Zn uptake by water lettuce (*Pistia stratiotes L.*) cultivated in nutrient solutions with different concentrations of the element.

Solution Conc. (mg L ⁻¹)	Kinetic parameters			
	<i>К</i> " (µmol L⁻¹)	<i>V_{max}</i> (µmol g ^{−1} h ^{−1})		
1.8	1.590 ± 0.035	0.080 ± 0.018		
18.0	61.240 ± 2.065	0.189 ± 0.008		

Average of three repetitions \pm standard deviation.

Table 5: Variation in biomass and root/shoot ratio of water lettuce (*Pistia stratiotes L.*) after 93 h of culture in nutrient solution contaminated with different doses of Zn.

Solution concentration	Biomass (grams)				
(mg L⁻¹)	Initial	Final	Root/shoot ratio		
1.8	42.03 ± 0.494	34.86 ± 0.985	0.43 ± 0.049		
18	45.98 ± 0.630	41.91 ± 0.890	0.63 ± 0.042		

Average of three repetitions \pm standard deviation.

Source: https://www.tandfonline.com/doi/full/10.1080/15226514.2020.1725868

Phytotoxicity Increase Induced by Zinc Accumulation in Cichorium intybus (2020)

Table 1: Mean leaf areas (square inch) of Cichorium after growing in natural and Zn-contaminated soils for 90 days

Days	Natural soil	Zn-contaminated soil		
	Non-contaminated	1200 mg kg^{-1}	2400 mg kg^{-1}	
15	$2.56^{a} \pm 0.05$	$2.64^{a} \pm 0.02$	$2.61^{a} \pm 0.02$	
30	$4.10^{b} \pm 0.09$	$3.99^{b} \pm 0.01$	$2.67^{\rm b} \pm 0.04$	
45	$8.35^{\circ} \pm 0.01$	$4.21^{\circ} \pm 0.05$	$2.31^{\circ} \pm 0.02$	
60	$9.56^{d} \pm 0.10$	$3.54^{de} \pm 0.04$	$2.28^{\text{ cd}} \pm 0.03$	
75	$14.63^{\text{ef}} \pm 0.12$	$3.53^{ed} \pm 0.02$	$1.20^{e} \pm 0.01$	
90	$14.75^{\rm f} \pm 0.04$	$3.32^{\rm f} \pm 0.05$	$0.95^{\rm f} \pm 0.01$	

Means with different letters in the vertical columns are significantly different by t-test at a 95% confidence level

Table 2: Mean leaf biomasses (g) of Cichorium after growing in natural and Zn-contaminated soils for 90 days

Days	Natural soil	Zn-contaminated soil	
	Non-contaminated	1200 mg kg^{-1}	2400 mg kg^{-1}
15	$0.23^{a} \pm 0.01$	$0.24^{a} \pm 0.04$	$0.23^{a} \pm 0.01$
30	$0.41^{b} \pm 0.03$	$0.40^{\rm b} \pm 0.02$	$0.41^{b} \pm 0.02$
45	$0.83^{c} \pm 0.01$	$0.42^{bc} \pm 0.04$	$0.37^{\rm c} \pm 0.02$
60	$1.62^{d} \pm 0.04$	$0.66^{d} \pm 0.03$	$0.36^{\rm cd} \pm 0.04$
75	$1.78^{\rm e} \pm 0.01$	$0.58^{\rm e} \pm 0.03$	$0.25^{ae} \pm 0.01$
90	$1.96^{\rm f} \pm 0.05$	$0.49^{\rm f} \pm 0.03$	$0.19^{\rm f} \pm 0.02$

Means with different letters in the vertical columns are significantly different by t-test at a 95% confidence level

Table 3: Mean leaf length (LL in inch) and mean root length (RL in square inch) of Cichorium after growing in natural and Zn-contaminated soils for 90 days

Days	Natural soil		Zn-contaminated soil				
	Non-contaminated		1200 mg kg ⁻¹	1200 mg kg^{-1}		2400 mg kg^{-1}	
	LL	RL	LL	RL	LL	RL	
15	$4.53^{a} \pm 0.04$	$3.94^{a} \pm 0.05$	$4.30^{a} \pm 0.08$	$2.44^{a} \pm 0.05$	$4.09^{a} \pm 0.12$	$1.97^{a} \pm 0.05$	
30	$5.30^{b} \pm 0.02$	$5.67^{b} \pm 0.10$	$4.47^{\rm b} \pm 0.05$	$3.35^{b} \pm 0.04$	$3.65^{b} \pm 0.04$	$1.98^{ab}\pm0.02$	
45	$5.32^{bc} \pm 0.03$	$13.86^{\circ} \pm 1.02$	$5.07^{\circ} \pm 0.02$	$5.59^{c} \pm 0.07$	$3.15^{\circ} \pm 0.20$	$2.05^{\circ} \pm 0.05$	
60	$6.46^{d} \pm 0.07$	$17.17^{\rm d} \pm 0.08$	$4.53^{d} \pm 0.02$	$6.30^{d} \pm 0.12$	$3.11^{\text{cd}} \pm 0.05$	$1.99^{\text{ad}}\pm0.02$	
75	$6.90^{e} \pm 0.03$	$19.40^{\rm e} \pm 0.03$	$4.16^{e} \pm 0.02$	$3.58^{e} \pm 0.08$	$3.05^{de} \pm 0.01$	$1.88^{e} \pm 0.01$	
90	$7.05^{\rm f} \pm 0.00$	$20.47^{\rm f} \pm 0.05$	$4.15^{\rm ef} \pm 0.04$	$2.76^{f} \pm 0.01$	$2.85^{\rm f} \pm 0.03$	$1.87^{\rm ef} \pm 0.02$	

Means with different letters in the vertical columns are significantly different by t-test at a 95% confidence level

Table 4: Concentrations of Zn (mg kg⁻¹) in Cichorium leaves after growing in natural and Zn-contaminated soils for 90 days

Days	Natural Soil	Zn-contaminated soil		
	Non-contaminated	1200 mg kg ⁻¹	2400 mg kg^{-1}	
15	$2.31^{a} \pm 0.75$	$334.0^{a} \pm 25.6$	$584.5^{a} \pm 43.4$	
30	$5.35^{b} \pm 1.05$	$401.9^{ab} \pm 1.05$	$620.6^{a} \pm 57.4$	
45	$9.43^{\circ} \pm 2.44$	$481.6^{bc} \pm 35.0$	$1136^{b} \pm 68.2$	
60	$15.6^{d} \pm 1.50$	$529.5^{\circ} \pm 30.1$	$1995^{\circ} \pm 37.6$	
75	$25.0^{\circ} \pm 0.54$	$700.3^{d} \pm 55.6$	$2028^{\circ} \pm 32.9$	
90	$37.5^{\rm f} \pm 3.89$	$809.7^{d} \pm 4.75$	$2232^{d} \pm 16.7$	

Means with different letters in the vertical columns are significantly different by t-test at a 95% confidence level

Source: https://link.springer.com/article/10.1007/s00128-020-02960-4

Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization (2020)

Place	Satellite location	EC ^a (dS/m)	рН ^а	OC (g/kg)	Av. N (kg/ha)	Av. P (kg/ha)	Av. K (kg/ha)	DTPA-Zn (mg/kg)
Mochia, Zawar	24° 21′ 37.6" N 73° 41′ 45.3" E	0.57	7.19	0.55	94.82	20.20	199.36	35.99
Balaria, Zawar	24° 35′ 38.8" N 73° 75′ 21.1" E	0.62	7.25	0.60	81.09	18.22	169.44	39.99

Table 1: Soil sample sites and chemical properties of experimented soil.

^a1:2 soil to water ratio, OC, organic carbon; Av. N, available nitrogen (Kjeldahl digestion); Av. P, available phosphorus (Olsen's P_2O_5); Av. K, available potassium (ammonium acetate extractable K_2O).

Table 2: Biochemical characterization of zinc tolerant bacteria.

Strain name	Starch hydrolysis	Citrate utilization	Nitrate reduction	Gelatin liquefaction	Catalase activity	Oxidase
ZTB 15	-	+	-	+	+	-
ZTB 24	+	+	+	-	+	-
ZTB 28	+	+	-	—	+	+
ZTB 29	+	+	-	-	+	-

+, Positive; -, negative.

Table 3: Effect of Zn concentration on biosorption of Zn by ZTB.

Strain	Concentration of Zn (mg/L) in the	% Biosorption of Zn by ZTB after 72 h		
name	biosorptionby ZTB after 72 h			
	Media with 20 mg/L Zn Media with 40 mg/L Zn M		Media with	Media with
	5	6	20 mg/L Zn	40 mg/L Zn
ZTB 15	1.508 ± 0.196^{a}	2.598 ± 0.252^{a}	92.46	93.51
ZTB 24	$3.285 \pm 0.020^{\circ}$	$9.586 \pm 0.121^{\circ}$	83.58	76.04
ZTB 28	1.831 ± 0.050^{b}	3.851 ± 0.059^{b}	90.85	91.87
ZTB 29	1.825 ± 0.309^{ab}	3.597 ± 0.252^{b}	90.88	91.01

Data is presented as means of 3 replicates \pm SD (standard deviation). The Mean value followed by same letter in column of each treatment is not significant difference at p = 0.05 by Tukey–Kramer HSD test.

Table 4: Plant growth promoting activities of ZTB.

PGPR activity	ZTB strains					
	ZTB15	ZTB24	ZTB28	ZTB29		
IAA production (µg/mL)	4.83 ± 0.02	4.32 ± 0.040	8.03 ± 0.02	12.54 ± 0.07		
ACC deaminase activity	+ +	+	+ +	+		
Ammonia production (µg/mL)	1.42 ± 0.23	1.49 ± 0.56	1.48 ± 0.18	1.45 ± 0.86		
HCN production	—	—	—	—		
$GA_3 (\mu g/mL)$	28.20 ± 1.31	60.60 ± 1.50	40.86 ± 1.23	28.10 ± 1.01		
Phosphate solublization index	4.60 ± 0.10	3.45 ± 0.10	4.10 ± 0.20	3.85 ± 0.04		
Potassium solublization index	4.20 ± 0.05	6.30 ± 0.05	6.33 ± 0.03	8.00 ± 0.10		
Silica solublization index	2.23 ± 0.02	2.90 ± 0.01	3.52 ± 0.01	2.30 ± 0.01		
Phytase production index	12.12 ± 0.01	11.42 ± 0.01	7.50 ± 0.02	11.42 ± 0.01		
Siderophore index (Z/C)	2.08 ± 0.01	1.66 ± 0.01	1.11 ± 0.01	2.00 ± 0.60		

+, Positive; ++, medium positive; +++, high positive; -, negative; Data is presented as means of 3 replicates ± SD (standard deviation).

Table 5: In vitro studies on the effect of zinc tolerant bacteria on growth and biomass of maize seedling under Zn stress conditions (1,000 mg Zn/kg planting mixture).

Treatment datails	A venego aboot	A womage most	A vonogo voot	A venage leaf	Total
Treatment uetans	Average shoot length (cm)	Average root length (cm)	number	Average leaf	chlorophyll
	iongen (enn)	iongen (em)		inum ou	(µg/mL)
T1: control without Zn and ZTB inoculation	$11.50 \pm 0.93^{\circ}$	38.50 ± 4.03^{b}	10.52 ± 0.98^{cd}	6.00 ± 1.0^{a}	34.14 ± 4.14^{b}
T2: control with Zn and without ZTB inoculation	8.90 ± 1.03^{bc}	36.50 ± 3.20^{b}	10.13 ± 0.86^{d}	5.00 ± 0.58^{a}	32.83 ± 4.91 ^b
T3: with Zn and ZTB15 inoculation	13.2 ± 1.47^{b}	47.23 ± 2.07^a	13.33 ± 1.32^{bc}	$5.30\pm1.15^{\rm a}$	$47.10\pm4.0^{\rm a}$
T4: with Zn and ZTB24 inoculation	$13.26\pm1.25^{\text{b}}$	48.56 ± 2.22^a	14.33 ± 1.25^{b}	6.30 ± 0.58^a	47.10 ± 3.77^a
T5: with Zn and ZTB28 inoculation	$16.59\pm0.90^{\mathrm{a}}$	52.96 ± 3.04^a	17.67 ± 1.23^{a}	6.67 ± 1.15^{a}	57.87 ± 3.99^a
T6: with Zn and	13.85 ± 1.10^{ab}	$50.23\pm1.94^{\rm a}$	14.33 ± 1.08^{b}	5.30 ± 1.15^{a}	48.67 ± 4.26^a
	2.21	4.42	2.21	2.01	(72
CD at 5%	2.21	4.42	2.21	2.01	6./3
CV%	14.08	7.97	13.61	28.93	12.44

Data are recorded after 30 days of germination; data is presented as means of 4 replicates \pm SD (standard deviation). The Mean value followed by same letter in column of each treatment is not significant difference at p = 0.05 by Tukey–Kramer HSD test.

Table 6: In vitro studies on the effect of ZTB on stress related enzymes of maize seedling under Zn stress conditions (1,000 mg Zn /kg planting mixture).

Treatment details	SOD (unit/mg) fresh weight	POD (umole/min/g)	PAL (umole/min/g)	Catalase	PPO (umole/min/g)
	ii csii weigitt	(µmore/mm/g)	(µmore/mm/g)	(µmore/mm/g)	(µmore/mm/g)
T1: control without	$0.21 \pm 0.02 f$	1.80 ± 0.18^{g}	0.0203 ± 0.002^{19}	$18.50 \pm 0.41^{\circ}$	0.0127 ± 0.001^{a}
Zn and ZTB					
inoculation					
T2: control with Zn	0.27 ± 0.02^{ab}	1.95 ± 0.30^{ab}	0.0213 ± 0.001^{ab}	19.23 ± 0.25^{a}	$0.0141 \pm 0.001^{\circ}$
and without ZTB					
inconlation					
moculation	ada	ha	~	ad	
T3: with Zn and	0.36 ± 0.03^{cue}	2.82 ± 0.20^{60}	0.0233 ± 0.006^{g}	20.92 ± 1.95^{cu}	0.0170 ± 0.002^{a}
ZTB15 inoculation					
T4: with Zn and	$0.39 \pm 0.03^{\rm bc}$	$2.27 \pm 0.25^{\rm ef}$	0.0283 ± 0.002^{cdef}	$22.58 \pm 1.26^{\circ}$	0.0163 ± 0.002^{b}
ZTB24 inoculation					
T5: with Zn and	0.33 ± 0.03^{def}	$2.20 \pm 0.25^{\text{ef}}$	0.0314 ± 0.001^{bc}	21.17 ± 2.05^{cd}	0.0174 ± 0.001^{a}
ZTB28 inoculation					
T6: with Zn and	0.37 ± 0.03^{cd}	2.71 ± 0.25^{cd}	0.0301 ± 0.005^{cd}	26.53 ± 1.51^{ab}	$0.0176 \pm 0.002^{\rm a}$
ZTB29 inoculation					
CD at 5%	0.050	0.460	0.010	1.430	0.001
CV%	8.61	11.15	14.10	3.65	4.42

*Value is mean of 4 replicates. The Mean value followed by same letter in column of each treatment is not significant difference at p = 0.05 by Tukey–Kramer HSD test.

Table 7: In vitro studies on the effect of ZTB on Zn accumulation in maize seedling under Zn stress conditions (1,000 mg Zn /kg planting mixture).

Treatment details	Zn concentration in shoot (µg/g fresh weight)	Zn concentration in root (µg/g fresh weight)
T1: control without Zn and ZTB inoculation	65.01 ± 5.0^{d}	46.03 ± 6.5^{e}
T2: control with Zn and without ZTB inoculation	632.64 ± 6.0^{a}	487.90 ± 11.5^{a}
T3: with Zn and ZTB15 inoculation	356.28 ± 5.1^{b}	$299.70 \pm 10.1^{\rm b}$
T4: with Zn and ZTB24 inoculation	335.31 ± 7.6^{bc}	280.20 ± 5.5^{bc}
T5: with Zn and ZTB28 inoculation	$333.12 \pm 7.5^{\circ}$	$262.20 \pm 7.0^{\circ}$
T6: with Zn and ZTB29 inoculation	339.57 ± 7.1^{bc}	218.70 ± 4.45^{d}
CD at 5%	2.44	6.22
CV%	0.39	1.29

Each value is mean of 4 replicates. The Mean value followed by same letter in column of each treatment is not significant difference at p = 0.05 by Tukey–Kramer HSD test.

Source: https://www.nature.com/articles/s41598-020-70846-w

Exposure of biosynthesized nanoscale ZnO to *Brassica Juncea* crop plant: morphological, biochemical and molecular aspects (2020)

Table 1: Number of interactions in the binding site determined through docking between α -amylase and Zinc acetate with their respective type of interaction.

Index	Entry	Gold score. Fitness	Interacting residues	Ionic/Hydrogen bond interactions number
1	Structure2D_CID_11192 dock1	36.2783	Tyr155, Gln158, Lys209, Tyr238	б
2	Structure2D_CID_11192 dock3	36.0536	Tyr155, Gln158, Lys209, Tyr238	6
3	Structure2D_CID_11192 dock2	35.4436	Tyr155, Gln158, Lys209, Tyr238	б

Table 2: Effect of ZnO NPs on different crop plants.

Plants	NP Concentration in soil/water	NP size(nm)	Effects
Macrotyloma uniflorum	2–100 mg/L	50	Delayed germination time
Fagopyrum esculentum	10–2,000 mg/L	<50 nm	Decreased the biomass content
Bean	500 mg/kg	<100 nm	Reduced root growth
Soybean	500 mg/kg	<100 nm	Ceased seed production
Glycine max	2,000 and 4,000 mg/L	55–70	Genotoxic
Lettuce	10 mg/kg	41–48	Enhanced the photosynthesis and biomass
Cyamopsis tetragonoloba	10 mg/kg	67	Increased its biomass, shoot-root length, length, chlorophyll content, and total soluble leaf protein
Triticum aestivum	20 mg/L	<100 nm	Increased grain yield and increase in shoot dry weight.
Arachis hypogaea L.	400 and 1000 mg/L	25–100	Improvement in the germination rate and seedling vigor index
Tomato and egg plants	1.0 mg/mL	38–46	Boost plant defence and yield
Brassica nigra	500 to 1500 mg/L	<100 nm	Reduced seed germination and seedling growth
Brassica napus	10 to 250 mg/L	155 ± 10	Chlorosis at high concentration
Brassica juncea	10–30 μg/ml	11 nm	Increased germination and chlorophyll biosynthesis rate along with low ROS production at 20 µg/ml. At 30 µg/ml germination rate, chlorophyll biosynthesis decreases and ROS production
			increases.

Source: https://www.nature.com/articles/s41598-020-65271-y

Impact of selenium, zinc and their interaction on key enzymes, grain yield, selenium, zinc concentrations, and seedling vigor of biofortified rice (2020)

Table 1: Chemical properties of experimental dry soil

No	Index	Content	Method
2	рН	5.8	Potentiometry (NYT 1377–2007)
3	Organic carbon (g/kg of soil)	38.4	Potassium dichromate volumetric method (NYT 1121–6-2006)
4	Extractable nitrogen (mg/kg of soil)	141	Universal extraction colometric method (NYT 1849–2010)
5	Extractable phosphorus (mg/kg of soil)	28.1	Universal extraction colometric method (NYT 1849–2010)
6	Extractable potassium (mg/kg of soil)	113	Universal extraction colometric method (NYT 1849–2010)
7	Total selenium (mg/kg of soil)	0.24	Fluorescence spectrophotometry (NYT1104–2006)
8	Bioavailable selenium (mg/kg of soil)	0.026	Extraction with 0.016 M potassium dihydrogen phosphate
9	Total zinc (mg/kg of soil)	2.75	(NY/T 890–2004)
10	Available zinc (mg/kg of soil)	1.48	Extraction with DTPA (diethylenetriaminepentaacetic acid)
11	Sulfur (mg/kg of soil)	2.75	Extraction with phosphate-acetic acid solution (NY/T 1121-14-2006)
12	Cadmium (mg/kg of soil)	0.13	Graphite furnace atomic absorption spectrophotometry (GB/T17141–1997)

Table 2: Treatments and Rates of zinc (Zn) and selenium (Se) nutrients soil application

No	Treatments	Zn	Se
		(mg/kg of soil)	(mg/kg of soil)
T1	Control	0	0
T2	Zn 5	5	0
T3	Zn 10	10	0
T4	Zn 15	15	0
T5	Se(1 mg/kg)	0	1
T6	$Se(1 mg/kg) + Zn_5$	5	1
T7	$Se(1 mg/kg) + Zn_{10}$	10	1
T8	$Se(1 mg/kg) + Zn_{15}$	15	1

Table 3: Total chlorophyll, carotenoids, superoxide dismutase (SOD), and catalase (CAT) activity of R725 rice genotype as affected by single selenium, zinc, and combined selenium-zinc (Se-Zn) addition

No	Treatments	Total chlorophyll content (mg/g of fresh weight)	Carotenoids (mg/g of fresh weight)	SOD (U/g of fresh weight)	CAT (nmol/g /min/g of fresh weight)
T1	Control	2.85 a	1.81 d	574.99 a	520.2 ab
T2	Zn ₅	2.85 a	2.07 bc	691.11 a	555.39 a
T3	Zn ₁₀	3.16 a	2.11 bc	696.00 a	590.58 a
T4	Zn ₁₅	3.27 a	2.71 a	641.01 a	465.12 ab
T5	Se(1 mg/kg)	3.26 a	1.83 d	299.21 b	250.92 d
T6	$Se(1 mg/kg) + Zn_5$	3.25 a	2.35 bc	308.31 b	304.47 cd
T7	$Se(1 mg/kg) + Zn_{10}$	3.5 a	2.23 bc	318.24 b	406.98 bc
T 8	$Se(1 mg/kg) + Zn_{15}$	3.28 a	2.49 ab	272.9 b	550.80 a
	SEm±	0.26	0.15	35.37	36.67

Data in the column with the same letter are not significantly different at the 0.05 level by least significant difference test; $SEm \pm stand$ for means of standard error

Table 4: Grain yield and total dry matter of R725 rice genotype as affected by single selenium (Se), zinc (Zn), and combined selenium-zinc (Se-Zn) addition

No	Treatments	Grain yield (g/pot)	Total dry matter (g/pot)
T1	Control	108.73 cd	221.07 b
T2	Zn ₅	125.27 ab	259.67 a
Т3	Zn ₁₀	131.6 ab	264.84 a
T4	Zn ₁₅	126.67 ab	257.63 a
T5	Se(1 mg/kg)	100.33 d	211.77 b
T6	$Se(1 mg/kg) + Zn_5$	119.93 bc	245.40 a
T7	$Se(1 mg/kg) + Zn_{10}$	124.6 ab	258.47 a
T8	$Se(1 mg/kg) + Zn_{15}$	133.57a	259.73 a
	SEm±	3.58	5.44

Data in the column with the same letter are not significantly different at the 0.05 level by least significant difference test; $SEm \pm stand$ for means of standard error

Table 5: Zinc concentration in different parts of grain of R725 rice genotype as affected by single selenium, zinc (Zn), and combined selenium-zinc (Se-Zn) addition

No	Treatments	Zinc concentration (mg/kg) in			
		Grain	Husk	Brown rice	Polished rice
T1	Control	79.82 b	43.08 bc	36.74 a	15.22 a
T2	Zn ₅	70.98 b	38.28 bc	32.70 a	18.29 a
Т3	Zn ₁₀	77.68 b	35.97 с	41.71 a	14.61 a
T4	Zn ₁₅	82.04 b	41.63 bc	40.38 a	18.99 a
Т5	Se(1 mg/kg)	101.46 a	62.18 a	39.28 a	15.81 a
T6	$Se(1 mg/kg) + Zn_5$	84.07 ab	50.79 ab	33.28 a	15.50 a
T7	$Se(1 mg/kg) + Zn_{10}$	79.62 b	38.29 bc	41.33 a	17.53 a
T8	$Se(1 mg/kg) + Zn_{15}$	70.32 b	38.23 bc	32.09 a	17.06 a
	SEm±	5.22	3.47	2.99	1.54

Data in the column with the same letter are not significantly different at the 0.05 level by least significant difference test; $SEm \pm stand$ for means of standard error

Table 6: Selenium concentration in different parts of grain of R725 rice genotype as affected by single selenium (Se), zinc (Zn), and combined selenium-zinc (Se-Zn) addition

No	Treatments	Selenium concentration (mg/kg) in			
		Grain	Husk	Brown rice	Polished rice
T1	Control	0.09 c	0.051 b	0.039 d	0.028 d
T2	Zn 5	0.085 c	0.047 b	0.037 d	0.034 d
T3	Zn 10	0.094 c	0.053 b	0.041 d	0.036 d
T4	Zn 15	0.085 c	0.051 b	0.034 d	0.033 d
T5	Se(1 mg/kg)	0.59 b	0.195 a	0.400 c	0.337 c
T6	$Se(1 mg/kg) + Zn_5$	0.775a	0.288 a	0.487 ab	0.408 bc
T7	$Se(1 mg/kg) + Zn_{10}$	0.8493a	0.283 a	0.567 a	0.533 a
T8	$Se(1 mg/kg) + Zn_{15}$	0.716 ab	0.222 a	0.494 ab	0.448 ab
	SEm±	0.036	0.026	0.024	0.017

Data in the column with the same letter are not significantly different at the 0.05 level by least significant difference test; $SEm \pm stand$ for means of standard error

Table 7: Germination%, length of coleoptile, and shoot and root as well as plant dry weight grown from seeds of R725 rice genotype harvested from single selenium, zinc (Zn), and combined selenium-zinc (Se-Zn) treatments

No	Treatments	Germination%	Length (mm) of			Plant Dry Weight
			Coleoptile	Shoot	Root	(g/30 plants)
T1	Control	96.67ab	1.42 ab	6.84 d	8.90b	0.72 a
T2	Zn ₅	96.67 ab	1.45 ab	7.47 cd	9.06 b	0.75 a
T3	Zn ₁₀	94.00 b	1.36 ab	7.48 cd	8.84 b	0.72 a
T4	Zn ₁₅	96.00 ab	1.62 a	8.24 bc	9.18 b	0.71 a
T5	Se(1 mg/kg)	94.00 b	1.32 b	7.25 d	8.41 b	0.66 a
T6	$Se(1 mg/kg) + Zn_5$	96.67 ab	1.22 b	7.30d	9.11 b	0.64 a
T7	$Se(1 mg/kg) + Zn_{10}$	98.67 a	1.62 a	8.50 b	10.84 a	0.71 a
T8	$Se(1 mg/kg) + Zn_{15}$	98.00 ab	1.36 ab	9.86 a	12.04 a	0.71 a
	SEm±	1.86	0.12	0.37	0.64	0.05

Data in the column with the same letter are not significantly different at the 0.05 level by least significant difference test; $SEm \pm stand$ for means of standard error

Source: https://link.springer.com/article/10.1007%2Fs11356-020-08202-8

Effects of exogenous zinc on the photosynthesis and carbonic anhydrase activity of millet (*Setaria italica L.*) (2020)

Table 1: Effect of exogenous zinc on the pigment content of millet leaves. Values are means \pm SE (n = 3). Different letters in the same column indicate significant difference at the p<0.05 level by Duncan's new multiple range test. Different concentrations of Zn solution (0, 20, 40, 60, 80, and 100 mg L⁻¹) were sprayed at the seedling stage of millet and recorded as CK, Zn₁, Zn₂, Zn₃, Zn₄, and Zn₅, respectively.

Cultivar	Treatment	Chl <i>a</i> [mg g- 1(FM)]	Chl <i>b</i> [mg g- 1(FM)]	Chl (<i>a</i> + <i>b</i>) [mg g-1(FM)]	Carotenoid [mg g-1(FM)]
Zhangzagu 10	СК	$9.66 \pm 0.18c$	$3.77 \pm 0.17b$	$13.43 \pm 0.11c$	1.40 ± 0.04 ab
Zn1	$10.13\pm0.05d$	$4.07\pm0.12cd$	$14.21 \pm 0.17e$	$1.47 \pm 0.04c$	
Zn2	$10.40 \pm 0.09e$	$4.21\pm0.03d$	$14.62 \pm 0.10 f$	$1.47 \pm 0.03c$	
Zn3	$9.99\pm0.07d$	$3.97 \pm 0.11c$	$13.96\pm0.04d$	1.42 ± 0.01 bc	
Zn4	$9.35 \pm 0.10b$	$3.47 \pm 0.09a$	$12.82\pm0.19b$	$1.36 \pm 0.05 ab$	
Zn5	$9.14 \pm 0.10a$	$3.27 \pm 0.11a$	$12.41 \pm 0.10a$	$1.35 \pm 0.02a$	
Jingu 21	CK	$7.36 \pm 0.11c$	2.38 ± 0.16 bc	$9.74 \pm 0.16c$	1.31 ± 0.09 ab
Zn1	$8.02 \pm 0.12d$	$2.60\pm0.32c$	$10.62\pm0.25d$	1.38 ± 0.13 ab	
Zn2	$8.36 \pm 0.09e$	$2.95 \pm 0.13d$	$11.32 \pm 0.12e$	$1.42\pm0.03b$	
Zn3	$7.86 \pm 0.05 d$	$2.56\pm0.14c$	$10.41 \pm 0.19d$	1.34 ± 0.05 ab	
Zn4	$7.02\pm0.09b$	$2.17\pm0.07ab$	$9.19 \pm 0.16b$	$1.27 \pm 0.01a$	
Zn5	$6.66 \pm 0.09a$	$1.95 \pm 0.17a$	$8.61 \pm 0.09a$	$1.26 \pm 0.08a$	

Table 2: Effect of exogenous zinc on photosynthetic gas-exchange parameters of millet. Values are means \pm SE (n = 3). Different letters in the same column indicate signifcant difference at the p<0.05 level by Duncan's new multiple range test. Different concentrations of Zn solution (0, 20, 40, 60, 80, and 100 mg L⁻¹) were sprayed at the seedling stage of millet and recorded as CK, Zn₁, Zn₂, Zn₃, Zn₄, and Zn₅, respectively. PN – net photosynthetic rate; gs – stomatal conductance; E – transpiration rate; Ci – intercellular CO₂ concentration.

Cultivar	Treatment	PN [μmol m-2 s-1]	gs [mmol m-2 s–1]	<i>E</i> [mmol m-2 s-1]	Ci [µmol mol-1]
Zhangzagu 10	СК	$6.95 \pm 0.13c$	$54.92 \pm 0.56c$	$2.388 \pm 0.051c$	$212.05\pm1.05d$
Zn1	7.50 ± 0.21 d	$56.90 \pm 0.34e$	$2.489 \pm 0.019e$	$195.18\pm1.28b$	
Zn2	$8.07\pm0.15e$	$58.24\pm0.27f$	$2.555 \pm 0.020 f$	$188.22 \pm 2.54a$	
Zn3	$7.38 \pm 0.11d$	$56.42 \pm 0.44d$	$2.463 \pm 0.023d$	$203.63 \pm 4.39c$	
Zn4	$6.51\pm0.13b$	$53.71\pm0.29b$	$2.314\pm0.016b$	$217.23 \pm 3.26e$	
Zn5	$6.06 \pm 0.22a$	$52.35 \pm 0.27a$	$2.243 \pm 0.014a$	$223.44\pm2.49f$	
Jingu 21	СК	$5.76 \pm 0.13c$	$50.56\pm0.84c$	$2.154\pm0.071c$	$249.58 \pm 1.33 d$
Zn1	$6.42 \pm 0.12e$	$53.23 \pm 0.39e$	$2.284\pm0.029d$	$221.47\pm0.82b$	
Zn2	$7.04\pm0.13f$	$55.02\pm0.20f$	$2.365 \pm 0.011e$	$207.34 \pm 1.73a$	
Zn3	$6.23\pm0.14d$	$52.61 \pm 0.34d$	$2.265 \pm 0.013d$	$234.20\pm4.38c$	
Zn4	$5.11 \pm 0.15b$	$48.05 \pm 0.12b$	$2.037 \pm 0.021b$	$260.70 \pm 3.12e$	
Zn5	$4.83 \pm 0.18a$	$46.24 \pm 0.33a$	$1.937 \pm 0.036a$	267.47 ± 2.31	

Source:

 $https://www.researchgate.net/publication/340753868_Effects_of_exogenous_zinc_on_the_photosynthesis_and_carbonic_anhydrase_activity_of_millet_Setaria_italica_L$

Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in

Table 1: Effect of n-ZnO on chlorophyll contents (mg/g fw) of Solanum lycopersicum L. (30 day exposure)

	Chl-a (30 day exposure)	Chl-b (30 day exposure)	T-Chl
Control	597±157a	533±138a	1130±221a
300 mg n-ZnO/kg	387±82b	163±41b	550±223b
600 mg n-ZnO/kg	217±65c	103±15b	320±56c
1000 mg n-ZnO/kg	300±20c	190±10b	490±26c

(90 day exposure)

	Chl-a (30 day exposure)	Chl-b (30 day exposure)	T-Chl
Control	607±85 ^ª	150±51b	750±87ab
300 mg n-ZnO/kg	657±50a	190±43a	847±91a
600 mg n-ZnO/kg	433±35b	227±40a	660±75ab
1000 mg n-ZnO/kg	263±69c	110±10c	367±72c

Note: Values are means \pm SD. Mean with the same letter(s) along the same column are not statistically different at p<0.05 by Turkey.

The nano-zinc oxide significantly affected the chlorophyll contents at early stage of the growth. Chl-a, -b and T-Chl at 30 days were all significantly reduced compared to control for all n-ZnO-treatments. The treatments caused reduction of Chl-a, b and T-Chl by at least 54.3%, 99.6% and 105.4%, respectively at 30 day exposure. The 90-day exposure effect of n-ZnO treatment on chlorophyll contents showed that the treatments did alter the contents of Chl-a, and T-Chl at ≤ 600 mg n-ZnO/kg.

Source: https://www.sciencedirect.com/science/article/abs/pii/S2352186418304681

Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification (2019)

Treatme nts	Grain (r	ng kg ⁻¹)	Glume (1	mg kg ⁻¹)	Stem (m	g kg ⁻¹)	Leaf (mg l	κg ⁻¹)	Root (mg	kg-1)
(mg kg ⁻¹)	Zn O	ZnSO4	ZnO	ZnSO4	ZnO	ZnSO4	ZnO	ZnSO 4	ZnO	ZnSO4
	NPs		NPs		NPs		NPs		NPs	
Control	18.3 e	18.3cd	10.4d	10.4d	8.7d	10.4e	6.6d	8.7e	15.5e	15.5d
10	22.6 de	20.6c	15.2c	12.7d	12.3c d	12.7e	8.2cd	12.3d	18.4d	16.2d
20	27.1 d	25.9bc	16.9c	15.6c	15.9c	15.6d	9.6c	15.9c	20.2cd	18.7cd
50	43.6 c	29.6b	12.7cd	18.5c	17.5c	18.5c	13.5b	17.5c	23.4c	20.3c
100	50.4 b	31.1b	17.0c	25.3b	21.1b	25.3b	14.0b	21.1b	35.2b	22.6c
200	52.4 b	35.4b	28.0b	25.0b	22.3b	25.0b	11.9bc	22.3b	39.0b	28.8b
1000	60.4 a	44.2a	37.7a	31.0a	39.7 a	31.0 a	20.1 a	39.7 a	82.7a	39.8 a

Table 1: Effects of Zn treatments on Zn concentration in different parts of wh
--

Note: Totally different lower case letters followed with values in the same column indicate significant differences between treatments (p < 0.05).

Zn can be accumulated in all tissues through soil as shown by results from the pot trial. All plant organs showed increased Zn content with the increase in treatment concentrations. The concentration of Zn in grains increased by 3.3 times and 2.4 times for ZnO NPs and ZnSO4 at 1000 mg kg-1. On the contrary, ZnSO4 was more effective at increasing leaf Zn than ZnO NPs, which increased remarkably from 41% to 356% and 24% to 205%, showed an average rate of 147% and 95% for ZnSO4 and ZnO NPs, respectively. Du et al. (2011) reported the similar results that Zn accumulations were significantly enhanced in different tissues treated with ZnO NPs.

Source: https://www.sciencedirect.com/science/article/pii/S0045653519306149

Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification (2019)

Treatments	Grain Yield (g pot ⁻¹)		Above gro	und Biomass (g pot ⁻¹)	Harvest Index (%)		
(mg kg ⁻¹)	ZnO NPs	ZnSO4	ZnO NPs	ZnSO4	ZnO NPs	ZnSO4	
Control	12.5b	12.5c	33.3cd	33.3d	37.5ab	37.5a	
10	13.2ab	14.5b	37.1c	42.4b	35.6ab	34.2ab	
20	18.6a	19.4a	54.4a	57.4a	34.2ab	33.8ab	
50	19.5a	18.6a	48.8ab	57.1a	39.9a	32.6b	
100	16.8b	18.5a	44.8b	52.1a	37.5ab	35.5ab	
200	15.4b	13.6bc	47.2ab	37.0c	32.6b	36.8ab	
1000	10.4c	8.5d	29.3d	23.9e	35.5ab	35.6ab	

Table : Effects of Zn treatments on grain yield, aboveground biomass and harvest index of wheat

In terms of the harvest index means, at 50 mg kg⁻¹, the harvest index increased by 6% for ZnO NPs, while all treatments with $ZnSO_4$ reduced harvest index.

Source: https://www.sciencedirect.com/science/article/pii/S0045653519306149

Effects of zinc fertilizer amendments on yield and grain zinc concentration under controlled environment conditions. (2018)

Table 1: Summary of Zn fertilizer treatments in pot experiment.

Treatment	Zn Application Method	Zn Application Rate (kg Zn ha ⁻¹)
Control	N/A ^a	0.000
ZnSO ₄	Soil	2.500
7% Zn lignosulphonate	Foliar	0.246
9% Zn chelated with EDTA	Foliar	0.246
9% Zn chelated with EDTA	Soil	0.246

Table 2: Effects of various forms of Zn fertilize on grain and straw yield (g pot⁻¹) of three lentil cultivars.

		Yield (g pot ⁻¹) ^a		
Fertilizer Cultiva		Grain	Straw	
Control	CDC Maxim	1.47 a	1.97 c	
	CDC Imvincible	1.43 a	1.92 c	
	CDC Impower	1.29 a	3.00 a	
Soil ZnSO ₄	CDC Maxim	1.45 a	1.92 c	
	CDC Imvincible	1.38 a	1.79 c	
	CDC Impower	1.37 a	2.93 a	
7% Zn foliar lignosulphonate	CDC Maxim	1.32 a	2.19 bc	
	CDC Imvincible	1.35 a	1.91 c	
	CDC Impower	1.43 a	2.71 ab	
9% Zn foliar EDTA chelated	CDC Maxim	1.36 a	1.84 c	
	CDC Imvincible	1.31 a	1.86 c	
	CDC Impower	1.35 a	2.78 a	
9% Zn soil EDTA chelated	CDC Maxim	1.52 a	1.85 c	
	CDC Imvincible	1.35 a	1.98 c	
	CDC Impower	1.33 a	2.72 ab	
SEM ^b	0.08	0.12		
Statistical Analysis	P values			
Fertilizer effect	0.828	0.579		
Cultivar effect		0.309	< 0.0001	
Fertilizer × cultivar interaction effect		0.662	0.334	

^aMeans with the same letter in the same column are not significantly different (P > .05) as determined by multitreatment comparisons using the Tukey-Kramer method.

^bSEM=standard error of mean.

Table 3: Effects of various forms of Zn fertilizer on grain and straw Zn concentration (mg Zn kg⁻¹) of three lentil cultivars.

		Zn Concentration (mg Zn kg ⁻¹) ^a		
Fertilizer	Cultivar	Grain	Straw	
Control	CDC Maxim	36.7 a	29.5 a	
	CDC Imvincible	38.2 a	31.4 a	
	CDC Impower	33.3 a	31.5 a	
Soil ZnSO ₄	CDC Maxim	36.2 a	24.4 a	
	CDC Imvincible	35.3 a	29.1 a	
	CDC Impower	33.7 a	32.2 a	
7% Zn foliar	CDC Maxim	41.0 a	30.1 a	
lignosulphonate				
	CDC Imvincible	38.4 a	30.3 a	
	CDC Impower	34.9 a	31.5 a	
9% Zn foliar EDTA chelated	CDC Maxim	41.6 a	33.2 a	
	CDC Imvincible	32.8 a	31.9 a	
	CDC Impower	36.9 a	31.6 a	
9% Zn soil EDTA chelated	CDC Maxim	37.3 a	32.8 a	
	CDC Imvincible	39.1 a	30.6 a	
	CDC Impower	43.5 a	30.6 a	
SEM ^b		4.53	2.21	
Statistical Analysis		P values		
Fertilizer effect		0.708	0.353	
Cultivar effect		0.719	0.569	
Fertilizer × cultivar interaction	on effect	0.859	0.536	

Table 4: Zinc removal (mg Zn pot⁻¹) in lentil cultivars amended with different forms of Zn fertilizer.

	Zn Uptake and Removal (µg Zn pot ⁻¹) ^a						
Cultivar	Straw	Grain	Total				
CDC Maxim	58.7 b	54.2 a	112.9 b				
CDC Imvincible	58.1 b	50.1 a	108.2 b				
CDC Impower	89.9 a	49.6 a	139.4 a				
SEM ^b	2.92	3.00	4.54				
P value	<0.0001	0.49	<.0001				

Source: https://www.tandfonline.com/doi/full/10.1080/01904167.2018.1462386

Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (*Vigna radiata*) (2017)

Table 1: Plant height (cm) on dry weight basis in mungbean varieties at different concentrations of Zn in solution culture.

Zn treatments	V1	V2	V3	V4	Mean ± St. dv
Control	19.60b	19.93d	19.53bc	13.03e	18.02b 3.33
1 μM	22.94a	22.60a	22.70a	20.73 cd	22.24a 1.02
2 μΜ	23.18a	23.00a	23.20a	21.03bc	22.60a 1.05
Mean \pm St.d v	21.91a	21.84a	21.81a	20.27b	
	2.00	1.67	1.99	4.53	

V1 = Ramazan, V2 = Swat mungI, V3 = NM92, V4 = KMI.

St. dv = standard deviation.

The mean followed by similar letter (s) are not significantly different at P=0.05

Table 2: Chlorophyll contents (mgkg⁻¹) on dry weight basis in mungbean varieties at different concentrations of Zn in solution culture.

Zn treatments	V1	V2	V3	V4	Mean ± St. dv
Control	35.7f	73.45de	93.12 cd	105.93c	78.55b 30.63
1 μM	36.81f	145.30b	210.82a	221.01a	153.5a 84.71
2 μΜ	64.54e	146.07b	210.57a	226.08a	153.5a 84.71
Mean \pm St.d v	45.69c	123.6b	171.5a	184.4a	
	16.34	41.71	67.88	67.95	

V1 = Ramazan, V2 = Swat mungI, V3 = NM92, V4 = KMI. St. d = standard deviation.

The mean followed by similar letter (s) are not significantly different at P = 0.05.

Table 3: Percent crude protein (dry weight basis) in mungbean varieties at different concentrations of Zn in solution culture.

Zn treatments	V1	V2	V3	V4	Mean ± St. dv
Control	12.90f	11.76f	13.95ef	11.54f	12.54c 1.11
1 μM	13.12f	16.45de	17.62bcd	18.12 cd	16.08b 2.25
2 μΜ	20.54ab	22.86a	20.99a	22.05abc	21.61a 1.05
Mean \pm St.d v	15.52a	17.02a	18.02a	17.24a	
	4.35	5.57	3.52	4.32	

V1 = Ramazan, V2 = Swat mungI, V3 = NM92, V4 = KMI.

St. d = standard deviation.

The mean followed by similar letter (s) are not significantly different at P = 0.05.

Source : https://www.sciencedirect.com/science/article/pii/S1878535213002050

Silicon addition to soybean (Glycine max L.) plants alleviate zinc deficiency (2016)

Table 1: Zinc content (μ mol plant⁻¹) at the three sampling times (M1, M2 and M3) after Zn removal from the NS. Values within a column followed by different letters differ significantly (P < 0.05, Duncan test).

Treatments	Leaves Zn (µmol leaves ⁻¹)			Stems Zn (µmol stems ⁻¹)			Root Zn (µmol root ⁻¹)		
	M1	M2	M3	M1	M2	M3	M1	M2	M3
Zn 0 Si (0.0–0.0)	0.44 d	0.68 c	0.84 d	0.057 c	0.165 b	0.270 c	0.12 d	0.24 b	0.37 b
Zn 10 Si (0.0–0.0)	1.29 ab	1.25 a	5.26 a	0.075 bc	0.052 c	0.414 a	0.65 a	0.22 bc	2.73 a
Zn 0 Si (0.5–0.5)	1.12 bc	0.92 b	1.35 b	0.083 bc	0.129 b	0.358 ab	0.14 d	0.15 d	0.49 b
Zn 0 Si (1.0–1.0)	1.05 c	1.05 b	1.19 bc	0.096 ab	0.250 a	0.415 a	0.27 bc	0.37 a	0.38 b
Zn 0 Si (0.5–0.0)	1.36 a	1.36 a	1.07 c	0.075 bc	0.165 b	0.278 c	0.18 cd	0.16 cd	0.56 b
Zn 0 Si (1.0–0.0)	1.03 c	0.96 b	1.21 bc	0.118 a	0.176 b	0.334 bc	0.38 b	0.17 cd	0.43 b

Source: https://www.sciencedirect.com/science/article/pii/S0981942816302753

Zinc Fertilization Under Optimum Soil Moisture Condition Improved the Aromatic Rice Productivity (2016)

Treatments	Zni	Zn2	Znt	Znx	Zn				
Shekhupura (Site 1)									
I	5.29	5.55	5.72	5.89	5.88				
I,	5.74	5.92	6.16	6.1	6.11				
I,	5.76	5.83	6.01	6.48	6.82				
I,	5.82	6.06	6.98	7.24	7.3				
!5	6.4	6.83	6.96	7.46	7.51				
Sargodha (Site 2)									
1	3.38	3.5	3.78	3.87	3.64				
Z	3.57	3.69	3.87	3.92	3.96				
Iz	3.96	4.28	4.58	4.86	5.14				
!4	3.85	4.28	4.58	5.13	5.59				
Is	4.2B	4.6	5.2	5.28	5.08				

Table 1: Effect of zinc fertilization and irrigation regimes on maximum LAI

LSD (Site 1) = 0.2, LSO (Site 2) = 0.13, Zn1 (0 kg ha"'), Znt t8 kg ha"'), Znt (10 kg ha"). Zn< (12 kg ha"'), Zns (14 kg ha"'), I (6 irrigations), Iz (8 irriga- tions), it (10 irrigations). I, (12 irrigations), Is (14 irrigations)

Table 2: Effect of zinc fertilization and irrigation regimes on LAD

Treatments	Zn,	Zn	Zn	Zn,	Zns				
Shekhupura (Site 1)									
I,	2.96.45	307.5	316.39	325.54	330.94				
I,	301.2	320.82	328.6	336.26	347.54				
I,	313.47	330.17	339	373.88	400.55				
I	323	346	376.1	407.86	424.83				
Is	345.42	378.89	394.81	422.38	411.31				
Sargodha (Site 2)									
I	192.6	209.57	223.97	234.06	232.49				
!2	210.5	219.58	236.81	244.38	251.15				
Ι	233.22	260.19	276.37	293.58	309.7				
I,	235.43	259.37	278.72	313.69	337.61				
ls	25.93	278.89	307.86	320.72	312.97				

LSD (Site 1) = 0.2. LSD (Site 2) = 0.1 3, Zn, (0 kg ha '). Znz (8 kg ha '), Znz (10 kg ha '), Zn
(12 kg ha-'). Zns (14 kg ha''), I, (6 irrigaûons). Iz (8 irriga- tions), It (10 irrigations), I (12 irrigations). I (14 irrigations)

	Table 3:	Effect of	zinc fertili	zation and	irrigation	regimes of	on NAR	$(g m^{-2})$	day")
--	----------	-----------	--------------	------------	------------	------------	--------	--------------	-------

Treatments	Zn,	Zn	Zns	Zn,	Znt			
Shekhupura (Site 1)								
!1	3.34	3.4	3.49	3.6	3.77			
lz	3.79	3.74	3.67	3.58	3.4			
I	3.86	3.64	4.06	3.67	3.66			
k	4.6	4.53	4.37	4.15	4.18			
!s	4.11	3.78	3.75	3.62	3.68			
Sargodha (Site 2)								
!1	2.92	2.98	3.07	3.18	3.35			
12	3.37	3.32	3.25	3.16	2.98			
3	3.44	3.22	3.64	3.25	3.24			
l,	4.18	4.11	3.95	3.73	3.76			
ls	3.14	3.36	3.33	3.2	3.26			

LSD (Site 1) = 0.2, LS0 (Site 2) = 0.13, Zn1 (0 kg ha''). Zne (8 kg ha''), Znz (10 kg ha''), Zn, (12 kg ha''), Zns (14 kg ha-'), If (6 irrigations), lz (8 irriga- tions), Iz (10 irrigations), I< (12 irrigations), Is (I 4 irrigations)

Table 4: Effect of zinc fertilization and irrigation regimes on total tillers per hill

Treatments	Zn1	Zn	Zn	Zn	Zns			
Shekhupura (Site 1)								
!1	14.27	14.54	15.64	16.94	18.29			
2	16.34	17.56	17.58	17.57	17.18			
l ₃	17.42	17.66	18.43	18.37	18.8			
I ₄	19.03	19.42	19.62	19.81	20.19			
l ₅	18.95	18.5	18.77	19.1	18.92			
Sargodha (Site 2)								
I,	13.55	13.76	14.19	14.59	14.85			
lz	14.69	15.2	15.58	15.86	16.41			
lz	15.79	16.32	16.53	16.88	17.21			
k	15.81	16.46	17.43	17.87	18.04			
ls	16.53	17.63	17.76	17.92	17.91			

LSD (Site 1) = 0.2, LSD (Site 2) = 0.13, Zn, $\ddot{y}0$ kg ha"). Zn; (8 kg ha"), Znz (10 kg ha '), Zn+ (12 kg ha-'), Zns (14 kg ha"'), I (6 irrigations), le (8 irriga- tions), I (10 irrigations), 1+ (12 ir \ddot{n} gations), I\ (14 irrigations)

Source: https://www.cabdirect.org/cabdirect/abstract/20163306772