NUMERICAL DATA

Fluorine in vegetation due to an uncontrolled release of gaseous fluorides from a glassworks: A case study of measurement uncertainty, dispersion pattern and compliance with regulation (2019)

The F contents determined in CRMs, Norway spruce, peach, common hornbeam, common bean and common grape vine together with their associated expanded uncertainties, standard deviations and confidence intervals for the mean.

Sample	d	w _F (sam)	Usam ^a s ^b t\$s/√N _{sam} ^c		t\$s/√N _{sam} ^c
	[m]	$[mg g^{-1}]$	$[mg g^{-1}]$	$[mg g^{-1}]$	$[mg g^{-1}]$
Norway spruce	90	1209	69	55	137
Norway spruce	214	219	28	4	11
Norway spruce	258	87.4	9.6	3.9	9.7
Norway spruce	295	67.8	8.6	1.2	2.9
Norway spruce	393	30.5	8.6	0.9	2.3
Norway spruce,	95032	9.7	8.5	0.3	0.8
control					-
Peach	242	132	10	4	9
Common hornbeam	256	676	36	20	51
Common bean	241	539	33	16	40
Common grape vine	238	264	28	5	12
SRM-2695, high level		295		6	11
SRM-2695, low level		68.0		1.7	3.2

^a Coverage factor k 1.96 to give expanded uncertainty at a 95% confidence level.

^b 68.3% confidence level.

^c t $\frac{1}{4}$ 4.3 to give a 95% confidence level (N $\frac{1}{4}$ 3).

Source: https://sci-hub.tw/10.1016/j.envpol.2019.02.046

Fluoride network and circular economy as potential model for sustainable development-A review (2019)

Different limitations of fluoride levels

Description	Regulatory Bodies/Country	Concentration (ppm)	Reference
Prescribed fluoride	WHO	0.9 to 1.2	WHO (2008)
concentration from	US PHS	0.7 to 1.2	Centers for Disease Control and
different regulatory bodies			Prevention (2015)
for sale consumption			Hattab (2006)
	μς έρα	1 4 to 2 4	$\frac{1}{2000}$
	US Department of Health	0.7	
	and Human Services		
	National Health and		New South Ministry of Health (2015)
	Medical Research Council	0.6 – 1.1	
	(Australia)		Beirne and O'Grady (2012)
	Fluoridation of Water		Sharma et al. (2017)
	Supply (Ireland)	0.6 – 0.8	
	Bureau of Indian		
	Standards	1.0	
Maximum Levels of	United States	4.0	(US EPA, n.d.)
in different countries	E.U.	1.5	EU (1998) Ministry of Leolth of the Depublic of
in unier ent countries	Indonesia	1.5	Indonesia (2010)
			Department of Health Republic of
	Philippines	1.0	the Philippines (2007)
		2.0	("Notification of the Ministry of
			Industry No. 332 (BE 2521)," 1978)
	Thailand	1.0	(National Environmental Standards
			No.81 (Laos), 2017)
			(Taipei Water Department, n.d.)
			Takefuji (2019)
	Laos	1.0	
	Taiwan	0.8	
		0.0	
	Japan	<0.8	

Fluoride concentration for the municipal waters may vary from different regulatory bodies or agencies as shown in Table.

Source: https://sci-hub.tw/https://doi.org/10.1016/j.chemosphere.2019.124662

Modeling and analysis of hydrogen fluoride pollution from an aluminum smelter located in Oman (2019)

Three-hour average peak values of HF concentrations simulated on January 15th (winter) and May 15th (summer) from 00:00 h to 23:00 h.

15 th of January (winter)		15 th of May (summer)			
Coordinates (km) Time	Time(HH:MM)	Peak (μg/m³)	Coordinates (km)	Time(HH:MM)	Peak (µg/m³)
-4.5, -1.5	12:00	0.0394	-1.5, 1.5	15:00	0.113
-9.5, 2.5	15:00	0.0390	-2.5, 2.5	15:00	0.111
-13.5, 4.5	18:00	0.0381	-2.5, 0.5	12:00	0.109
-1.5, -0.5	12:00	0.0369	-0.5, 0.5	15:00	0.0.084
-2.5, 0.5	15:00	0.0358	-3.5, 3.5	15:00	0.0.083
-13.5, 3.5	18:00	0.0357	-3.5, 0.5	12:00	0.075
-10.5, 2.5	15:00	0.0355	-1.5, -0.5	12:00	0.0714
-9.5, 2.5	18:00	0.0350	-9.5, -3.5	18:00	0.0713
-1.5, 2.5	09:00	0.0347	-1.5, -0.5	09:00	0.0638
-6.5, 1.5	15:00	0.0345	-4.5, 4.5	15:00	0.0598

The ten highest concentration levels for a three-hour average on the summer modeling day are provided to establish a simple comparison between the one - and three - hour average concentrations. The maximum three-hour average concentration was 0.113 μ g/m³ at 22:00 h and was located at –1.5, 1.5 km, which is very close to the origin.

Source: https://sci-hub.tw/https://doi.org/10.1016/j.scs.2019.101802

Comparative investigation of fluoride adsorption using different absorbents (2018)

Adsorbent		Isotherm Model	pН	Capacity (mg/g)
Natural	Natural pumice	F	6.0	4.50
materials	Natural pumice	F	3.0	1.170
	Natural geomaterial limonite (Iron	L	7.0	0.269
	Ore)			
	Kaolinite clay	L		1.450
	Montmorillonites	F	6.0	3.365
	Untreated reed root	L	7.0	3.547
	Untreated reed stem	L	7.0	0.655
	Untreated reed leaf	L	7.0	0.669
Modified	Modified pumice with FeCl ₃	F	3.0	21.740
materials	Modified pumice with HDTMA	F	3.0	25.000
	Modified magnetite ore with aluminum	L	7.8	M-Al 1.51
	and lanthanum ions			M-Na 1.42
	Modified montmorillonite with Fe(III)	L	4.5	9.696
	Modified chitosan with neodymium	L	7.0	22.380
	Modified zeolite with calcium chloride	F/L		1.766
	Desugared reed root	L	7.0	10.860
	Desugared reed stem	L	7.0	6.405
	Desugared reed leaf	L	7.0	5.497
Synthetic	MnCO ₃ nanowires	L	7.0	11.580
materials	Graphene oxide (GO)-incorporated	L	7.0	22.900
	iron-aluminium mixed oxide			
	Ce-Ti oxides nanoparticles	L	7.0	44.370
	Ce-Ti@Fe ₃ O ₄ nanoparticles	L	7.0	91.070

Source:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800200/table/ijerph-15-00101-t003/?report=objectonly

Comparison of maximum sorption capacity of fluoride with Pistia stratiotes and biosorbents (2018)

Adsorbent	Maximum adsorption capacity	Reference
Used tea leaves	0.52 mg g ⁻¹ DW	Methodia and Selvapathy (2005)
Tamarind seed	6.37 mg g ⁻¹ DW	Murugan and Subramanian, 2006
<i>Moringa indica</i> based activated carbon	0.23 mg g ⁻¹ DW	Karthikeyan and Ilango, 2007
Spirogyra sp. –IO2	1.27 mg g ⁻¹ DW	Mohan et al., 2007
Pleurotus ostreatus 1804	1.27 mg g ⁻¹ DW	Rmanaiah et al., 2007
Tea Waste	3.83 mg g ⁻¹ DW	Cai et al. 2015
Pista stratiotes	0.006 mg g ⁻¹ DW	Karmaka et al., 2018

Source: https://link.springer.com/article/10.1007/s13762-017-1439-3

Fluoride accumulation in different plant species. (2018)

Plants Name	Fluoride conc.	References
(botanical name)	(µg g ⁻¹)	
Wheat	5.04 ± 0.15	Devika and Nagendra (2009); Jha et al. (2008);
Triticum aestivum	2.59-4.60	Gupta and Deshpande (1998); Jagtap et al.
Spinach	29.15±0.03	(2012)
Spinacea oleracea	42.3±4.1	
	0.77–4.14	
Cabbage	11.30±0.03	Devika and Nagendra (2009)
Brassica oleracea var.		
capitata		
Cauliflower	12.09±0.14	
Brassica oleracea var.		
botrytis		
Fodder	17.53±0.08	
Carrot	10.75±0.04	
Daucus carota subsp.		
sativus		
Lady Finger	22.19±0.09	Devika and Nagendra (2009); Gupta and
Abelmocus esculenta	1.74-4.00	Deshpande (1998); Jagtap et al. (2012)
Onion Allium cepa	10.50±0.09	
	1.00-3.70	
Potato	11.95±0.53	
Solanum tuberosum	1.27-2.92	
Tomato Lycopersicon	13.48±0.08	Devika and Nagendra (2009)
esculuntum		
Mustard Brassica	14.44 ± 0.18	Gautam et al. (2010)
juncea		
Barley	4.84±0.12	
Hordeum vulgare		
Vigna radiata	10.700±0.23	
Radish	22.20±0.19	
Raphanus		
raphanistrum subsp.		
sativus		
Pea	8.34±0.11	
Pisum sativum		
Bathua	13.24±0.20	
Chenopodium album		
Coriander	26.94±0.16	Gupta and Banerjee (2011)

Coriandrum sativum		
Bean	15.26±0.32	
Phaseolus sp.		
Sweet potatoes	0.14±7.0	Gupta and Deshpande (1998); Jagtap et al.
Ipomoea batatas		(2012)
Sponge gourd	12.8 ± 0.8	Jha et al. (2008)
Luffa cylindrica		
Banana	0.84-2.90	Gupta and Deshpande (1998); Jagtap et al.
Musa		(2012)
Grapes	0.84-1.74	
Vitis Vinifera		
Apple	1.05-5.7	
Malus		
Guava	0.24-5.10	
Psidium guajava		
Mango	0.80-3.70	
Magnifera indica		
Bengal gram	3.84-14.8	
Cicer arietinum		
Green gram	2.34-21.2	
Vigna radiata		
AlfaAlfa	130	Miller et al., 1999
Brome	106	
Orchard	97	
Alta Fescue	102	
Acalypha indica	12.1	Devi et al., 2016
Abutilon indicum	9.8	
Cleome viscosa	1.5	
Cassia occidentalis	5.6	
Ipomea biloba	23.1	
Asystesia gigantica	15.2	
Eupnordia nirta Clitoria torreste	12.5	
Cutoria ternate	4.0	
Acuciu Arubicu Morromia tridontata	5.1	
Amaranthus viridis	12.1	
THUU UUUUUS VUI UUS	12.1	

Source: https://www.ncbi.nlm.nih.gov/pubmed/29649763

Distribution and pollution evaluation of fluoride in a soil–water–plant system in Shihezi, Xinjiang, China (2017)

The extraction method of F forms.

Forms of F	Extracting solution	Operating conditions
WS-F	60°C redistilled water	Shake 0.5 h
Ex-F	$1 \text{ mol/L MgCl}_2 (pH = 7.0)$	Shake 1 h in 25°C
Fe/Mn-F	Miscible liquids of 0.04 mol/L NH ₂ OH·HCl and 25% (V/V) acetic acid	Shake 1 h in 60°C
Or-F	0.02 mol/L HNO ₃ +30% H ₂ O ₂ , 3.2 mol/L NH ₄ AC	Shake 0.5 h in 25°C
Res-F	Subtracting the other four fractions from T-F content	

F Content in different species of plant leaves (mg/kg).

Types of plant leaves	F	Types of plant leaves	F
Brassica pekinensis Rupr.	2.22	Raphanus sativus Linn.	2.33
Cleome gynandra Linn.	2.40	Brassica pekinensis (Lour.) Rupr.	1.90
Chrysanthemum coronarium Linn.	1.75	A. persica L. var. compressa	2.81
Phragmites australis (Cav.) Trin. ex Steud	2.40	Beassica pekinensis (Lour.) Rupr.	2.22
Brassica chinensis Linn. var. oleifera			
Makino et Nemoto	1.90	Karelinia caspia (Pall.) Less.	2.22

Statistical comparison of F in soil, water and plant leaves.

Sample	Mean value
Soil	614.6 mg/kg
Water	1.754 mg/L
Plant leaves	2.215 mg/kg

F pollution index of soil.

		P _F	
Sample number	P _{mean}	P _{max}	Comprehensive pollution index
77	1.21	2.33	1.86

Source: https://www.tandfonline.com/doi/full/10.1080/10807039.2017.1385386