NUMERICAL DATA

Responses of greenhouse-gas emissions to land-use change from rice to jasmine production in subtropical China (2019)

Global-warming potential (GWP) of paddy and jasmine fields (average \pm SE, N = 3) analyzed by mixed models, with plot as a random factor.

Land use	Cumulative greenhouse-gas emission (g m ⁻²)			GWP (kg CO2-eq ha ⁻¹)			Total GWP (kg CO2-eq ha ⁻¹)
	CO ₂ CH ₄ N ₂ O		CO2	CH₄	N ₂ O		
Paddy field	7245 ±	25.5 ±	0.56 ±	72453 ±	8865 ±	1667 ±	82784 ± 3421a
	335a	1.3a	0.08a	3352.48a	428.13a	2284a	
	4744 ±	0.31 ±	3.36 ±	47437 ±	105 ± 150b	10013 ±	57556 ± 3056b
Jasmine	125b	0.44b	1.15a	1245.69b		3423b	
field							

Different letters within a column indicate significant differences (P < 0.05).

 CO_2 flux in the paddy field was generally higher from April to December (rice growth period, and the beginning of straw return for December, > 264 mg m⁻² h⁻¹) and lower from January to March (fallow period, < 100 mg m⁻² h⁻¹). CO_2 flux in the jasmine field was generally higher from April to August (jasmine rapid-growth period, > 770 mg m⁻² h⁻¹) and lower from September to March of the next year (jasmine slow-growth period, < 300 mg m⁻² h⁻¹). Cumulative CO_2 emission was lower in the jasmine than the paddy field (P < 0.05).

Source: https://www.sciencedirect.com/science/article/abs/pii/S1352231018308896

Challenges of Employing Renewable Energy for Reducing Green House Gases (GHGs) and Carbon Footprint (2019)

Different renewable technologies and their emissions

Renewable technology	Basic information	Renewable source	CO ₂ emission (gmCO ₂ eq/kWh)
Fuel cell	Device which converts chemical energy into electrical energy	Methanol (CH ₃ OH), Natural gas, Reforming of CH ₄ to H ₂ leads to decreased efficiency	50
Photovoltaic (Solar PV)	Generates no heat and produces electricity from solar radiation	Sun	Utility scale - 48 Rooftop - 41
Wind	Converts wind energy to electrical energy by wind turbines.	Wind	Offshore – 12 Onshore – 11
Hydro	Natural Resource	Water	24
Biomass	Biofuel, Waste management system	Biological waste	Dedicated – 230
Geothermal energy	Thermal energy of Earth	Earth Temperature	38
Other renewables	OTEC (Ocean thermal energy conversions)	Temperature difference between cooled water and warm tropical surface waters	17

^a Source: IET Renew. Power Gener., 2016, vol. 10, Iss. 7, pp. 873–884.

^b Source: IPCC, 2014. Global warming potential of selected electricity sources.

Source: https://sci-hub.tw/https://doi.org/10.1016/B978-0-12-803581-8.11170-1

Challenges of Employing Renewable Energy for Reducing Green House Gases (GHGs) and Carbon Footprint (2019)

Year	Precipitation change (%)			Sea level rise (cm)
	Annual I	Monson	Winter	
2020s	1.36 ± 0.19	1.61 ± 0.16	1.13±0.43	4–8
2050s	6.7 ± 8.9	-2.9 ± 26.3	6.7 ± 8.9	15–38
2080s	11.0 ± 12.3	5.3 ± 34.4	11.0±12.3	46–59

Precipitation change projections for India due to increasing GHGs

Source: Aggarwal, D., Lal, M., 2001. Vulnerability of Indian Coastline to Sea-level Rise, New Delhi: Centre for Atmospheric Sciences, Indian Institute of Technology

Temperature change projections for India due to increasing GHGs

	Annual I	Monson	Winter
2020s	1.36 ± 0.19	1.61 ± 0.16	1.13±0.43
2050s	2.69 ± 0.41	3.25 ± 0.36	2.19±0.88
2080s	3.84 ± 0.76	4.52 ± 0.49	3.19±1.42

Source: Aggarwal, D., Lal, M., 2001. Vulnerability of Indian Coastline to Sea-level Rise, New Delhi: Centre for Atmospheric Sciences, Indian Institute of Technology.

URL: https://sci-hub.tw/https://doi.org/10.1016/B978-0-12-803581-8.11170-1

Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO₂ (2018)

Table 1. Representative studies reporting GHG emissions from rice soils under different water management practices.

Author	uthor Environment GHG Emis				
		CH ₄ (kg ha ⁻¹)	N_2O (kg ha ⁻¹)	GWP (kg CO ₂ equivalent ha ⁻¹)	
Hadi et al., 2010	Continuous flooded	634.2 ^a	3.4 ^c	15,378	
	Intermittent drainage	370.9 ^a	4.6 [°]	9706	
Tyagi et al.,	Continuous flooded	14.45 ^b	-	8153.88	
2010	Intermittent drainage	8.53 ^b	-	4816.25	
Xu and Hosen,	Continuous flooded	2.62	-	-	
2010	Irrigation at 79% soil water	1.7	-	-	
	content				
Khosa et al.,	Continuous flooded	1.3 ^b	-	_	
2011	AWD	0.47 ^b	-	_	
Li et al., 2011	Early aeration	1.49	132 ^d	2920	
	Prolonge aeration	1.52	85 ^d	2300	
Wang et al.,	Continuous flooded	_	0.28	-	
2011	Intermittent drainage	_	0.37	-	
Wang et al.,	Continuous flooded	221	0.16	_	
2012	Intermittent drainage	74	0.22	-	
Jain et al., 2014	TPR	22.59	0.61	888.1	
	SRI	8.81	0.91	644.3	
Li et al., 2014	Early aeration	1.27 ^b	112 ^d	2640	
	Prolonged aeration	0.85 ^b	113 ^d	2330	
Pandey et al.,	Continuous flooded	108	0.31	2784	
2014	AWD	31	0.74	1005	
Kumar et al.,	Continuous flooded	34.07	1.04	2328.53	
2016 Irrigation at -40 kPa		16.7	0.98	1867.64	

Value in kg carbon ha^{-1} season⁻¹. а

- Value in mg $m^{-2} h^{-1}$. b
- Value in kg Nitrogen ha^{-1} season⁻¹. Value in μ g N₂O m⁻² h⁻¹. с
- d

Source : https://www.sciencedirect.com/science/article/pii/S0048969718338026

Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review (2018)

Table 1: Effects of biochar application on the greenhouse gas emissions in forest soils.

Soil type	Study type (scale)	Biochar type	Biochar rate	Time	CO2 emission (over control)	CH4 uptake (over control)	N2O emission (over control)	Reference
Cambisols	Laboratory	Corn silage (500°C)	1%, w/w	105	No significant difference	No significant difference	Decreased N ₂ O emission	Malghani et al. (2013)
Ferralsols	Laboratory	Chicken manure (540°C)	10%, w/w	84	-	Increased CH₄ uptake	-	Yu et al. (2013)
Brunisol	Laboratory	Sugar maple wood (500°C)	5, 10, and 20%, w/w	24	Increased CO ₂ emission	-	-	Mitchell et al. (2015)
Humo-ferric podzols	Laboratory	Douglas-fir (420°C)	1 and 10%, w/w	25	Increased CO ₂ emission	Decreased CH ₄ uptake	No significant difference in the 1% biochar treatment; Increased N ₂ O emission by 191% in the 10% biochar treatment	Hawthorne et al. (2017)
Lixisol	Field	Wheat straw (450°C)	30 t ha ⁻¹	1	Decreased CO ₂ emission by 31.5%	-	Decreased N ₂ O emission by 25.5%	Sun et al. (2014)
Ferralsols	Field	Bamboo leaf (500°C)	5 t ha ⁻¹	1	No significant difference	-	-	Wang et al. (2014)
Humo-ferric podzols	Field	Mixed maple and spruce sawdust (350–450 °C)	1 and 10%, w/w	1	No significant difference	No significant difference	No significant difference	Sackett et al. (2015)
Ferralsols	Field	Bamboo leaf (500°C)	5 t ha ⁻¹	1	-	-	Decreased N ₂ O emission by 20.5%	Xiao et al. (2016b)
Humo-ferric podzols	Laboratory	Douglas-fir slash (420°C)	20 t ha ⁻¹	3	Increased CO ₂ emission by 6.6%	Decreased CH ₄ uptake by 8.4%	-	Johnson et al. (2017)
Ultisol	Field	Chicken manure (400°C)/Sawdust (400°C)	24 t ha ⁻¹	1	-	No significant difference	No significant difference	Lin et al. (2017)
Ferralsols	Field	Bamboo (800°C)	10 and 30 t ha ⁻¹	16	No significance difference	-	-	Zhou et al. (2017)

Source: https://link.springer.com/article/10.1007/s11368-017-1906-y

Nitrogen fertilization and conservation tillage: a review on growth, yield, and greenhouse gas emissions in cotton. (2017)

Place of	GHG under	GHG emission	GHG flux	Reference
study	study			
Pakistan	N ₂ O	3.2 kg ha ⁻¹	2.33 g N ha ⁻¹ day ⁻¹	Mahmood et al. (2008)
China	N ₂ O	2.6 kg ha^{-1}	$30 \ \mu g \ N \ m^{-2} \ h^{-1}$	Liu et al. (2010)
China	NO	0.8 kg ha^{-1}	$8.8 \ \mu g \ N \ m^{-2} \ h^{-1}$	Liu et al. (2010)
Uzbekistan	N ₂ O	0.9 to 6 kg ha ^{-1}	3000 µg N m ⁻² h ⁻¹	Scheer et al. (2008a, b)
Australia	CO ₂ e	127, 127, and 1634 kg ha ⁻¹	-	Maraseni et al. (2010)
		(for solid-plant,		
		double-skip, and irrigated		
		cotton farming systems,		
		respectively)		

Table 1. Reported GHG emission and their fluxes in different countries in cotton.

Source: https://link.springer.com/article/10.1007/s11356-016-7894-4