NUMERICAL DATA

Acquisition and Homeostasis of Iron in Higher Plants and Their Probable Role in Abiotic Stress Tolerance (2018)

Table 1: Iron nutrition and drought stress tolerance.

Mode of Fe application	le of Fe application Plant species Plant attributes		References		
Foliar application of Iron	Soybean	Improvements in yield	Kobraee et al., 2011; Afshar et al., 2013		
Foliar application of Iron	Wheat crop	Increases in 1,000 seed weight	Arif et al., 2006; Afshar et al., 2013		
Foliar application of Iron with Zinc	Cumin	Diminishes oxidative stress by reducing H ₂ O ₂ content and lessening lipid peroxidation	Akbari et al., 2013		
Iron with zinc Spray	Calendula officinalis	Improves the leaf characters (weight, area and numbers) resulting into enhancement in the effects triggered by drought stress	Pirzad and Shokrani, 2012		
Iron application with sulfur	Sesame	Improves growth, nutrient, yield, and their components	Mostafa et al., 2011		
Nano-iron application	Cowpea	Improvement of protein quality being advantageous in increasing resistance to drought stress	Parhamfar, 2006; Afshar et al., 2012		
Fe spraying	Creeping Bentgrass	Modifies drought resistance through its effects on root growth	Snyder and Schmidt, 1974; Glinski et al., 1992		
Iron application	Turf grasses	Leads to color enrichment and growth improvement in Fe-deficient conditions	Deal and Engel, 1965; Minner and Butler, 1984; Glinski et al., 1992		
Iron application	Turf grass	Gives darker green color for cool-season in Fe-sufficient condition	Snyder and Schmidt, 1974; Carrow et al., 1988; Schmidt and Snyder, 1984; Yust et al., 1984; Wehner and Haley, 1990; Glinski et al., 1992		
Iron application	Legumes	Positive responses to iron nutrition	Slatni et al., 2008; Rotaru, 2011		
Application of Iron with Zinc	Rapeseed (Brassica napus)	Influence on prolin, protein and nitrogen related metabolism of Pourgholam et al., 2013 leaf			
Iron Foliar Fertilization	Sunflower	Improves yield of oil and growth and development of seeds	Elanz et al., 2011		

Table 2: Iron-mediated up-regulation of antioxidative enzymes (SOD, APX, and CAT) and heavy-metal stress tolerance.

Metals against which iron used	Antioxidant defense machinery and iron assimilatory enzymes and iron plaque	Plant species	Responses	References
Cd Iron p	Iron plaque	Rice	Promotes enhancement in iron uptake by plant; reduces the damaging effect of Cd; helps in their ultimate sequestration on the root surface	Liu et al., 2007, 2008
		Rice	Fe-plaque formation altered significantly the accumulation of Se in the aerial part of the plant	Xin-Bin and Wei-Ming, 2007
		Rice	Formation of plaque increases the sequestration of Pb on root surface; thereby prevents their uptake and accumulation of Se inside the plant	Liu et al., 2011
	Iron fertilizer (EDTA-Na ₂ Fe) and FeSO ₄	Rice	Soil/foliar application of Fe fertilizer (EDTA-Na ₂ Fe) and FeSO ₄ reduces the adverse effect of Cd on rice root, shoot and rice grains	Shao et al., 2008
	Fe-nutrition	Rice	Cd uptake and accumulation inside the plant could be reduced by modifying the iron status of soil	Shao et al., 2007
As I	Fe plaque	Rice	Fe-plaque increases As (III and IV) adsorption and its translocation to shoot; decreases the effect of root anatomy characteristic, on As uptake inside the root	Deng et al., 2010
		Spirodela polyrhiza L.	Arsenate uptake occurred through the phosphate uptake pathways in S. polyrhiza by physico-chemical adsorption on Fe-plaques of plant surface as well	Rahmana et al., 2008
P	Fe plaque	Pilea cadierei	Such plant in wetland condition removes the phosphorus from Fe-rich soil, hence suitable for construction of artificial wetland	Yang et al., 2011

Source: https://www.frontiersin.org/articles/10.3389/fenvs.2017.00086/full

Role of Iron in Alleviating Heavy Metal Stress (2017)

Table 1: Role of Fe in alleviating heavy metals stress in different plants.

Fe dosage	HM conc.	Plant species	Effect	References
Fe + EDTA at 5, 10, 20 ppm	Cd at 0, 50, 100 μM	Rice (Oryza sativa L.)	Improve plant growth, leaf area, and leaf water content; reduce Cd toxic effects, decrease proline, MDA content, antioxidant enzyme activities	Ali et al. (2014)
Fe at 2.77, 5.54, and 8.31 μM	Cd and Pb at 10 μM	Typha latifolia	Decrease Cd and Pb uptake and translocation in plant shoots and roots, absorb Pb on roots at maximum Fe	Rodriguez- Hernandez et al. (2015)
Fe at 1.89 and 16.8 mg L ⁻¹	Cd at 5 µM	Rice (Oryza sativa L.)	Increased MDA content, improve plant growth and SPAD value, enhanced antioxidant enzyme activities	Shao et al. (2007)
Fe at 0.54– 2.6 mg kg ⁻¹	Pb at 45–199 mg kg ⁻¹ Cd at 1.1–3.5 mg kg ⁻¹	Rice plant tissues	Promote metal deposition on root surfaces, limit Pb and Cd translocation, and distribution in plant tissues	Cheng et al. (2014)
Fe at 10, 30,50, 80, and 100 mg L ⁻¹	Cd at 0.1 and 1 mg L ⁻¹	Rice (Oryza sativa L.)	Decrease Cd supply in shoots and roots, inhibit Cd uptake and translocation within rice plant, decrease radioactivity of ¹⁰⁹ Cd in shoots of seedlings	Liu et al. (2007)
Fe at 10 and 250 μM	Cd at 25 μM	Barley	Enhance antioxidant enzyme activities, improve plant growth and biochemical parameters, reduce Cd toxic effects	Sharma et al. (2004)
Fe at 40 μM	Cd as Cdcl ₂	Indian mustard	Reduce oxidative stress and metal toxicity, stabilize thylakoid complex, retention of chloroplast and chlorophyll contents	Qureshi et al. (2010)

Source: Z. ul Hassan et al. DOI 10.1007/978-3-319-58841-4_13

Responses of rice to chronic and acute iron toxicity: genotypic differences and biofortification aspects (2016)

Table 1: Statistical analysis of the effects of chronic and acute Fe toxicity on visible symptom formation and growth parameters of six different rice genotypes on eight measuring days.

Variable	DAT	ANOVA res	LS means (Treatment)				
		Treatmen	Genotype	Interaction	Control	Acute	Chroni
		t					c
Leaf	28	0.4999	<0.0001	0.0481	n.d.	2.5	1.3
bronzing	35	0.1861	<0.0001	0.3260	n.d.	3.0	1.2
score	42	0.5102	<0.0001	0.3090	n.d.	0.5	0.7
	49	0.0006	<0.0001	0.0508	n.d.	0.3b	0.6a
	56	0.0004	<0.0001	0.0023	n.d.	0.2b	0.5a
	63	0.0368	<0.0001	0.0028	n.d.	0.2b	0.3a
	70	<0.0001	0.0588	0.2020	n.d.	0.1b	0.6a
	77	<0.0001	0.0869	0.1905	n.d.	o.ob	0.6a
Plant	28	0.1708	<0.0001	0.0193	52.6	49.6	50.8
height	35	0.0684	<0.0001	0.0216	64.6	60.4	62.0
(cm)	42	0.0066	<0.0001	0.0316	73.6a	68.6b	72.3ab
	49	0.0088	<0.0001	0.0881	82.5a	77.0b	81.7a
	56	0.0109	<0.0001	0.1035	97.3ab	93.1b	100.2a
	63	0.0258	<0.0001	0.2828	103.7ab	100.8b	107.2a
	70	0.0434	<0.0001	0.1187	107.5ab	104.9b	111.0a
	77	0.0390	<0.0001	0.1530	112.9ab	108.9b	115.9a
Tiller	28	0.3391	<0.0001	0.2006	2.0	1.6	1.5
number	35	0.0584	<0.0001	0.4206	4.0	3.1	3.2
	42	0.3226	<0.0001	0.3487	5.3	4.7	4.3
	49	0.1750	<0.0001	0.5816	8.2	7.0	6.7
	56	0.5095	<0.0001	0.5376	10.9	9.4	9.8
	63	0.7687	<0.0001	0.4203	11.8	11.0	11.3
	70	0.7640	<0.0001	0.3720	11.7	10.9	11.6
	77	0.6730	<0.0001	0.5650	11.6	10.8	11.3

LS means = least square means; DAT = days after transplanting. LS mean values not sharing the same superscript letter within one line differ significantly from each other at P < 0.05. n.d. = not determined

Table 2: Statistical analysis of the effects of acute and chronic Fe toxicity on yields and yield components of six different rice genotypes.

Variable	ANOVA resi	LS means (Treatment)				
	Treatment	Genotype	Interact ion	Cont rol	Acute	Chronic
Grain yield (t ha ⁻¹)	0.0001	<0.0001	0.2068	4.9 ^a	4.8 ^a	4.0 ^b
Straw yield (t ha ⁻¹)	0.0684	<0.0001	0.3513	7.5	8.0	7.3
Harvest index	0.0019	<0.0001	0.1876	0.40 ^a	0.38a	0.36 ^b
Panicles (number m ⁻²)	0.2641	<0.0001	0.4191	198	207	199
Grains per panicle	<0.0001	<0.0001	0.6232	156ª	159 ^a	145 ^b
Spikelet sterility (%)	0.0148	<0.0001	0.0400	23 ^a	27 ^{ab}	30 ^b
Thousand kernel weight (g)	0.0496	>0.0001	0.3029	20.6ª	20.5 ^{ab}	20.0 ^b
Grain Fe concentration (mg kg ⁻¹)	0.4037	<0.0001	0.0004	30	34	33
Grain Zn concentration (mg kg ⁻¹)	0.3151	<0.0001	0.6365	21		

LS means = least square means; LS mean values not sharing the same superscript letter within one line differ significantly from each other at P < 0.05

Source: https://link.springer.com/article/10.1007/s11104-016-2918-x