Mercury Numerical Data

Describing the toxicity and sources and the remediation technologies for mercurycontaminated soil (2020)

Table 1: Common remediation technologies for contaminated soil

	Technology	Operation	Reagent
Physical	Soil replacement	Cleanning soil replaces contaminated soil	—
remediation Soil vapour extraction		Reduction of the vapor pressure of soil pores	—
	Thermal desorption	Separation of pollutants from soil by heating	MgCl ₂ , etc.
	Electric remediation	Establish electric field gradient	KI, EDTA, etc.
Chemical	Soil washing	Extraction and separation of contaminants from soil by	HCl, HNO ₃ , H ₂ SO ₄ , H ₃ PO ₄ , NaCl,
remediation		eluent	$Na_2S_2O_3$, KI, <i>etc</i> .
	Chemical stabilization	Addition of chemical reagents or chemical materials	Sulfide, phosphate, <i>etc</i> .
Biological remediation	Phytoremediation	The use of plants and their associated rhizospheric microorganisms to remove contaminants	Hyperaccumulators, etc.
	Microbial remediation	Control contaminants in soil by introducing microorganisms	Bacteria, etc.
	Animal remediation	Utilizing the activities of some lower animals to enhance bioremediation	Earthworm

Table 2: Desorption temperatures of different Hg phases

Phase	Desorption temperature of phases Hg (°C)
Hg ⁰	119±9
HgCl ₂	135 ± 5
Hg–FeS ₂	169 ± 5
HgS metacinnabar	190 ± 11
Hg-OM (Hg bound toorganic matter)	217±7
HgS cinnabar	303 ± 13
HgO	$308 \pm 1;471 \pm 5$
HgSO ₄	580 ± 19
Hg(NO ₃) ₂ ·H ₂ O	215 ± 4 ; 280 ± 13 ; 460 ± 25
Hg ₂ Cl ₂	170
Hg in pyrite	>450
Hg in sphalerite	600
Hg matrix-bound	200–300

Source: https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra01507e#!divAbstract

Effect of soil mercury pollution on ginger (*Zingiber officinale Roscoe*): Growth, product quality, health risks and silicon mitigation (2020)

Treat ment days (d)	Treat ment	Plant height (cm)	Stem diameter (cm)	Shoot number	Leaf number	Root FW (g)	Stem FW (g)	Leaf FW (g)	Rhizome FW (g)
40	CK	49.7 ± 1.5^{a}	1.2 ± 0.1^{a}	$3.7\pm0.6^{\mathrm{a}}$	56.7 ± 1.5^{a}	$\underset{b}{17.6\pm0.8^{a}}$	61.4 ± 1.1^{a}	32.5 ± 0.6^a	72.6 ± 0.6^{a}
	T1	50.6 ± 2.0^{a}	1.2 ± 0.1^{a}	3.3 ± 0.6^{a}	57.7 ± 1.5^{a}	18.3 ± 0.4^{a}	59.2 ± 2.6^{ab}	32.1 ± 0.6^a	70.6 ± 2.5^{a}
	T2	49.5 ± 1.3^{a}	1.1 ± 0.1^{b}	3.3 ± 0.6^{a}	55.3 ± 1.5^{a}	$\underset{b}{17.2\pm0.3^{a}}$	56.7 ± 3.8^{b}	31.4 ± 1.1^{a}	$67.7 \pm 6.$ 0^{a}
	Т3	47.8 ± 0.8^{a}	1.1 ± 0.1^{b}	2.3 ± 0.6^{b}	50.0 ± 1.7^{b}	${{}^{1}_{c}6.5\pm0.6^{b}}$	45.6 ± 0.4^{c}	27.8 ± 0.8^{b}	$53.7 \pm 5.$ 7^{b}
	T4	44.8 ± 0.8^{b}	$1.0 \pm 0.1^{\circ}$	2.0 ± 0.0^{b}	$46.3 \pm 2.1^{\circ}$	15.9 ± 0.6^{c}	40.9 ± 0.4^{d}	$23.9\pm0.6^{\rm c}$	$45.9 \pm 0.9^{\circ}$
80	СК	61.2 ± 1.3^{a}	1.3 ± 0.1^{a}	5.7 ± 0.6^{a}	62.0 ± 1.0^{a}	30.5 ± 0.9^{a}	86.0 ± 1.3^{a}	45.7 ± 1.0^{a}	94.8 ± 1.5^{a}
	T1	61.7 ± 1.5^{a}	1.3 ± 0.1^{a}	5.3 ± 0.6^{a}	61.0 ± 2.0^{a}	29.4 ± 0.9^{a}	80.7 ± 5.8^{ab}	44.4 ± 0.7^{a}	$89.8 \pm 3.$ 3^{b}
	T2	59.8 ± 1.4^{a}	1.3 ± 0.1^{b}	4.7 ± 0.6^{ab}	59.3 ± 3.2^{a}	27.5 ± 2.2^{b}	74.9 ± 7.7^{b}	39.0 ± 3.6^{b}	$84.7 \pm 4.5^{\circ}$
	T3	54.4 ± 1.0^{b}	1.2 ± 0.1^{c}	3.7 ± 0.6^{bc}	52.3 ± 1.2^{b}	$23.9 \pm 0.5^{\circ}$	$49.2 \pm 1.0^{\circ}$	31.1 ± 1.0^{c}	$59.8 \pm 0. \\ 8^{d}$
	T4	47.0 ± 1.0^{c}	1.1 ± 0.1^{d}	3.3 ± 0.6^{c}	$48.7 \pm 1.2^{\circ}$	20.2 ± 1.3^{d}	$43.8 \pm 0.9^{\circ}$	26.2 ± 0.7^{d}	50.8 ± 0.8^{e}
120	СК	66.7 ± 1.2^{a}	1.4 ± 0.2^{a}	8.3 ± 0.6^{a}	81.3 ± 1.5^{a}	42.6 ± 2.2^{a}	126.1 ± 1.7^{a}	60.3 ± 3.8^{a}	$\begin{array}{c} 148.9\pm6\\.4^a \end{array}$
	T1	65.3 ± 2.1^{ab}	1.4 ± 0.1^{a}	7.7 ± 0.6^{ab}	79.3 ± 1.5^{a}	$\underset{b}{41.3\pm0.3^a}$	119.8 ± 5.1^{b}	55.3 ± 1.5^{b}	$\underset{ab}{142.7\pm5}$
	T2	61.3 ± 2.3^{b}	1.4 ± 0.1^{a}	7.7 ± 0.6^{ab}	76.7 ± 4.7^{b}	39.5 ± 2.2^{a}	$112.7 \pm 4.7^{\circ}$	52.3 ± 3.3^{b}	$\begin{array}{c} 137.7\pm 6\\.4^{b}\end{array}$
	Т3	$56.2 \pm 2.6^{\circ}$	$\underset{b}{1.3\pm0.1^{a}}$	7.3 ± 0.6^{bc}	$68.7 \pm 1.2^{\circ}$	36.9 ± 0.2^{b}	94.4 ± 1.9^{d}	$45.2 \pm 1.8^{\circ}$	119.6 ± 1 .3 ^c
	T4	50.7 ± 2.3^{d}	1.2 ± 0.1^{b}	$6.7 \pm 0.6^{\circ}$	53.0 ± 2.0^{d}	$32.2 \pm 1.6^{\circ}$	87.7 ± 0.8^{e}	38.3 ± 1.5^{d}	$\begin{array}{c} 110.3\pm1\\.2^{d} \end{array}$

Table 1: The effect of mercury stress level on the growth of ginger

Table 2: The effect of mercury stress level on yield and quality of ginger rhizome.

Treatment	Yield (g plant ⁻¹)	Soluble sugar (%)	Crude cellulose (mg g ⁻¹)	Soluble protein (mg g ⁻¹)	Free amino acid (mg g^{-1})	Vitamin C (%)	Gingerol (%)	Naphtha (%)
СК	148.93 ^a	0.79^{a}	0.24 ^c	2.96 ^a	0.52^{a}	2.78 ^a	0.58^{a}	4.35 ^a
T1	142.67 ^{ab}	0.78^{a}	0.23 ^c	2.86 ^b	0.48^{b}	2.72 ^b	0.53 ^b	4.13 ^b
T2	137.67 ^b	0.62 ^b	0.31 ^b	2.68 ^c	0.37 ^c	2.63 ^c	0.41 ^c	3.97 ^c
Т3	119.63 ^c	0.55 ^c	0.38 ^a	2.21 ^d	0.26 ^d	2.59 ^d	0.35 ^d	3.75 ^d
T4	110.27 ^d	0.48 ^d	0.39 ^a	2.08 ^d	0.21 ^e	2.31 ^e	0.26 ^e	3.67 ^e

Note: Under the same column, values followed with the same letter was not significant at P = 0.05.

Source: https://www.sciencedirect.com/science/article/pii/S0147651320303110?via%3Dihub

Table 1: Promoting effect of chemical accelerators for accumulating and transferring Hg by plants.

Plant species	Chemical accelerators	Promoting effect	Reference
Willow	КІ	6.46-8.26 μg/g个 (Hg accumulation in soils), 1.03-1.55%个 (Hg accumulation in plants)	Wang and Greger, 2006
Lepidium sativum L.	Compost and KI	32%-41%个 (Hg accumulation in plants)	Smolinska and Szczodrowska, 2017
Brassica juncea	(NH4)2SO4	25-fold个 (Hg accumulation in roots), ≈control plants (Hg accumulation in shoots)	Wang et al., 2017
Brassica juncea	NH4Cl	 ≈control plants (Hg accumulation in roots), ≈control plants (Hg accumulation in shoots) 	Wang et al., 2017
Brassica juncea	NaNO3	≈control plants (Hg accumulation in roots),≈control plants (Hg accumulation in shoots)	Wang et al., 2017
Brassica juncea	EDTA	 ≈control plants (Hg accumulation in roots), ≈control plants (Hg accumulation in shoots) 	Wang et al., 2017
Brassica juncea	(NH4)2S2O3	49-fold个 (Hg accumulation in roots), about 32 and 3.8 mg/kg个 (Hg accumulation in stems and leaves)	Wang et al., 2017
Brassica juncea	Na2SO3	62-fold个 (Hg accumulation in roots), about 21 and 4.3 mg/kg个 (Hg accumulation in stems and leaves)	Wang et al., 2017
Brassica juncea	Na2S2O3	37-fold个 (Hg accumulation in roots), 13-fold and 0.2 mg/kg个 (Hg accumulation in stems and leaves)	Wang et al., 2017
Chenopodium glaucum L.	(NH4)2S2O3	1100%, 600% and 200%个 (Hg accumulation in roots, stems and leaves)	Wang et al., 2011
Poa annua	(NH4)2S2O3	About 2.66 mg/kg个 (Hg accumulation in shoots), about 236.39 mg/kg个 (Hg accumulation in roots)	Pedron et al., 2013
Brassica juncea	(NH4)2S2O3	About 44.66 mg/kg个 (Hg accumulation in shoots), about 116.39 mg/kg个 (Hg accumulation in roots)	Pedron et al., 2013
Helianthus annuus	(NH4)2S2O3	About 4.66 mg/kg个 (Hg accumulation in shoots), about 96.39 mg/kg个 (Hg accumulation in roots)	Pedron et al., 2013
Lepidium sativum L.	Na2S2O3	0.55-0.611个 (TF)	Smolinska and Rowe, 2015
Oxalis corniculata L.	Na2S2O3	302.29-310.7个 (TF)	Liu et al., 2018b
Lupinus albus	HCI	1.94-2.47 μg/plant个 (Hg accumulation in plants)	Rodríguez et al., 2016
Lupinus albus	EDTA	0.42 μg/plant个 (Hg accumulation in plants)	Rodríguez et al., 2016
Oryza sativa L.	Sulfur fertilizer	3.59-31.43 μg/kg个 (MeHg accumulation in grains), about 4-15 μg/kg个 (IHg accumulation in grains), about	Li et al., 2019c
		0.3-1 mg/kg个 (IHg accumulation in straw), about 10-28µg/kg个 (IHg accumulation in roots)	

Lepidium sativum L.	Compost	0.054-0.119↑ (BAF)	Smolinska, 2015
Solanum nigrum L.	Biochar	About 0.01, 0.05, 0.09 and 0.1 mg/kg个 (Hg accumulation in roots after four, five, six and seven months)	Li et al., 2019a
Solanum nigrum L.	Attapulgite	About 0.04, 0.1, 0.125 and 0.15 mg/kg个 (Hg accumulation in roots after four, five, six and seven months)	Li et al., 2019a
Brassica juncea	Cytokinin+(NH4)2S2O3	20.2×10 ⁻³ 个 (TF)	Cassina et al., 2012
Brassica juncea	(NH4)2S2O3	5.3×10 ⁻³ 个 (TF)	Cassina et al., 2012
Brassica juncea	Cytokinin	3.6×10 ⁻³ ↓ (TF)	Cassina et al., 2012
Helianthus annuus	Cytokinin+(NH4)2S2O3	4.4×10 ⁻³ 个 (TF)	Cassina et al., 2012
Helianthus annuus	(NH4)2S2O3	3.4×10 ⁻³ ↓ (TF)	Cassina et al., 2012
Helianthus annuus	Cytokinin	9.1×10 ⁻³ 个 (TF)	Cassina et al., 2012
Brassica juncea	NH4SCN	0.1 mg/kg个 (Hg accumulation in roots), 0.1 mg/kg个 (Hg accumulation in shoots)	Moreno et al., 2005
Brassica juncea	(NH4)2S2O3	71.5 mg/kg个 (Hg accumulation in roots), 41.5 mg/kg个 (Hg accumulation in shoots)	Moreno et al., 2005

↑: increasing compared to no chemical accelerators addition; \downarrow : decreasing compared to no chemical accelerators addition; \approx : similar to no chemical accelerators addition.

Table 2: Promoting effect of transgenic plants for accumulating and transferring Hg.

Plant species	Gene	Promoting effect	Reference
Tobacco	merA/B	100-fold↑ (Hg accumulation in leaves)	Hussein et al., 2007
Arabidopsis thaliana	merC	About 6-23 ng/mg↑ (Hg accumulation in leaves)	Sasaki et al., 2006
Arabidopsis thaliana	merP	About 5.35 µg/g↑ (Hg accumulation in plants)	Hsieh et al., 2009
Arabidopsis thaliana	MerC	About 5-200 ng/g↑ (Hg accumulation in plants)	Kiyono et al., 2013
Arabidopsis thaliana	MerC-SYP121	About 0.03-0.21↑ (TF)	Uraguchi et al., 2019
Alfalfa	GST, CYP2E1	About 3.0-4.2 times (Hg accumulation in plants)	Zhang et al., 2013
Arabidopsis	PtABCC1	26-72%↑ (Hg accumulation in plants)	Sun et al., 2018
Poplar	PtABCC1	53-136%, 26-160% and 7-31%↑ (Hg accumulation in roots, stems and leaves)	Sun et al., 2018

 \uparrow : increasing compared to untransformed plants.

Source: https://www.sciencedirect.com/science/article/abs/pii/S0304389420311274

Transgenic *merA* and *merB* expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil (2020)

Table 1: Mercury content in samples of lab soil with HgCl₂ added and soil collected from power plant

Samples	Mercury content in soil samples							
	Total Hg (μg/kg) ^c	Organic Hg (μg/kg) ^d	Inorganic Hg (μg/kg) ^e	Organic/total Hg (%)				
Lab dry soil with HgCl ₂ added ^a	258.86 ± 2.39	3.85 ± 0.61	255.01 ± 1.90	1.49				
Lab paddy soil with HgCl ₂ added ^a	259.10 ± 1.33	6.36 ± 3.16	252.74 ± 1.87	2.45				
Dry soil from power plant ^b	379.23 ± 12.65	1.75 ± 0.58	377.48 ± 13.12	0.46				
Paddy soil from power plant ^b	399.70 ± 7.65	4.89 ± 1.33	394.80 ± 8.59	1.22				

 a HgCl₂ was added to the dry and paddy soil to a final concentration of 260 µg/kg and the soil samples were analyzed after 2 months

^b The dry and paddy soil samples were collected within 1 km from a coal-fired power plant in Nanjing, Jiangsu Province, China

^c Total Hg samples were digested by in a Closed Microwave Sample Preparation System (ETHOS One; Milestone, Italy) as described in EPA method 7473 (USEPA 2007)

^d Organic Hg samples was extracted as described by Boszke et al. (2007), and the samples was treated with bromating agent to oxidize organic Hg to Hg(II) for determination

^e Inorganic Hg was calculated as difference between total mercury and organic mercury

Table 2: Mercury content in leaves of transgenic and WT Arabidopsis, tobacco, tomato and rice plants

Plant	Mercury c	Mercury content in leaf samples (μg/kg)										
species	Soil with no Hg(II) added		Soil with 80 μg/kg Hg(II) added		Soil with 260 μg/kg Hg(II) added		Soil with 1600 µg/kg Hg(II) added					
	WT	MB	WT	MB	WT	MB	WT	MB				
Arabidopsi s	5.62 ± 0.8 2	3.18±0.25 ª	37.18 ± 1.2 8	7.82 ± 0.73 ª	159.2 ± 9.28	38.72 ± 1.4 3ª	456.04 ± 15.3 6	113.86 ± 1.9 3ª				
Tobacco	4.28±1.1 4	2.24 ± 0.79	20.78 ± 1.5 4	3.94 ± 0.87 ª	98.95 ± 5.14	21.55 ± 1.4 8ª	334.70 ± 4.47	73.81 ± 0.12ª				
Tomato	3.83 ± 1.0 3	2.52 ± 0.66	21.92 ± 0.4 8	4.04 ± 0.31 ^a	93.50 ± 7.99	21.22 ± 2.9 6ª	298.49 ± 7.02	72.05 ± 0.33ª				
Rice	6.88±1.3 2	5.13 ± 0.71	40.11 ± 2.6 2	8.81 ± 1.21 ª	137.55 ± 7.4 0	32.91 ± 0.8 8ª	301.93 ± 11.2 9	81.01 ± 3.59ª				

Bolded and italic numbers indicate that the mercury concentrations in samples exceeded the maximum allowed mercury level of 10 µg/kg FW in vegetables (Food Safety Standard in China, GB 2762-2012) (CSEPA 2012)

MB mercury-breathing plants

^aThe mercury concentrations of WT and MB plant samples were significantly different at P = 0.05

Plant	Mercury content in seed samples (µg/kg)									
species	Soil without Hg(II) added		Soil containing 80 µg/kg Hg(II)		Soil containing 260 µg/kg Hg(II)		Soil containing 1600 µg/kg Hg(II)			
	WT	MB	WT	MB	WT	MB	WT	MB		
Arabidop sis	$\begin{array}{c} 1.1\pm0.1\\ 6\end{array}$	$\begin{array}{c} 0.45\pm0.\\ 03^a \end{array}$	$\begin{array}{c} 9.27 \pm 1.0 \\ 2 \end{array}$	$1.06 \pm 0.$ 10^{a}	$29.12 \pm 1.$ 62^{a}	$5.16 \pm 0.$ 12^{a}	72.73±4. 72	$13.02 \pm 0.$ 37^{a}		
Tobacco	$\begin{array}{c} 1.35\pm0.\\ 08\end{array}$	$\begin{array}{c} 0.69\pm 0.\\ 09^a \end{array}$	$\begin{array}{c} 10.9\pm0.2\\ 5\end{array}$	$\begin{array}{c} 1.03\pm0.\\ 04^a \end{array}$	$17.91 \pm 0.$ 13	$4.31 \pm 0.$ 32^{a}	54.54±1. 32	$14.17 \pm 0.$ 42^{a}		
Rice	$\begin{array}{c} 2.29\pm0.\\ 48\end{array}$	1.35 ± 0.10^{a}	11.33±1. 76	$2.11 \pm 0.$ 31^{a}	39.81 ± 0. 43	$9.41 \pm 2.$ 31^{a}	$60.09 \pm 2.$ 29	$17.20 \pm 2.$ 35^{a}		

Table 3: Mercury content in seeds of transgenic and WT Arabidopsis, tobacco and rice plants

Bolded and italic numbers indicate that the mercury concentrations in samples exceeded the maximum allowed mercury level of 20 μ g/kg FW in grains (Food Safety Standard in China, GB 2762–2012) (CSEPA 2012)

MB mercury-breathing plants

^aThe mercury concentrations of WT and MB plant samples were significantly different at P = 0.05

Source: https://link.springer.com/article/10.1007/s00299-020-02570-8

Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (*Zea mays L.*) Seedlings (2019)

Hg V	V(µg/g, FW)	(BF) _V	(TF) v	Hg (μg/g, FW)	(BF) _{Hg}	(TF) _{Hg}
	Shoots Roots			Shoots	Roots	
0 0	$0.04 \pm 0.00e$ $0.37 \pm 0.04d$	-	0.1 2	$0.30\pm0.01\text{b}$	$0.65 \pm 0.02b -$	0.46
1	$0.51 \pm 0.03d$ $2.55 \pm 0.24d$	3.05	0.2 0	$2.60\pm0.47a$	$4.69 \pm 0.21a -$	0.55
5	0.90±0.04c 9.75±0.52c	2.13	0.0 9	$2.74\pm0.05a$	$4.63 \pm 0.07a -$	0.59
10	$1.27 \pm 0.08b \ 14.01 \pm 0.23b$	1.53	0.0 9	$2.19\pm0.03b$	$4.56 \pm 0.08a -$	0.48
20	2.43 ± 0.16a 19.89 ± 0.41a	1.12	0.1 2	$2.83\pm0.05a$	$4.60 \pm 0.02a -$	0.62
5 0	$0.31 \pm 0.03d$ $1.53 \pm 0.18d$	0.37	0.2 0	$4.39\pm0.04c$	$19.84 \pm 0.04c \ 4.85$	0.22
1	0.53±0.03d 3.80±0.31c	0.72	0.1 4	$4.42 \pm 0.12c$	22.15 ± 1.07b 4.43	0.20
5	1.14 ± 0.20 c 17.85 ± 0.78 a	1.90	0.0 6	18.97 ± 0.02a	132.15 ± 0.19a 15.11	0.14
10	$1.56 \pm 0.16b \ 19.47 \pm 0.58a$	1.40	$\begin{array}{c} 0.0 \\ 8 \end{array}$	$4.60\pm0.05b$	$16.00 \pm 0.10d \ 1.37$	0.29
20	$1.95 \pm 0.17a \ 16.82 \pm 1.54ab$	0.75	0.1 2	$4.24\pm0.00d$	$4.86 \pm 0.12e \ 0.36$	0.87
10 0	$0.30 \pm 0.01b$ $1.84 \pm 0.08d$	0.21	0.1 6	$5.73\pm0.08d$	44.83 ± 0.03c 5.06	0.13
1	$0.46 \pm 0.07b$ $4.96 \pm 0.39c$	0.49	0.0 9	$6.50 \pm 0.16c$	$45.34 \pm 0.98c \ 4.71$	0.14
5	$1.62 \pm 0.19a\ 20.02 \pm 0.15a$	1.44	$\begin{array}{c} 0.0 \\ 8 \end{array}$	22.54 ± 0.32a	298.53 ± 1.03a 21.40	0.08
10	$1.66 \pm 0.03a \ 19.78 \pm 0.54a$	1.07	$\begin{array}{c} 0.0 \\ 8 \end{array}$	$8.41\pm0.07b$	63.31 ± 0.30b 3.59	0.13
20	1.70±0.05a 9.79±0.42b	0.38	0.1 7	6.63 ± 0.03c	11.34 ± 0.08d 0.60	0.58

Table: V and Hg concentration in different parts of maize seedlings (µg/g, FW)

Values are means \pm SD (n = 3). Different letters in the same column indicate a significant difference at the 5% level

Hg, V extraneous mercury and vanadium mg/L, BF bioconcentration factor, TF translocation factor

V and Hg concentrations in different parts of maize seedlings are shown in Table. It showed that when the Hg stress level was 0 mg/L, there was still a small amount of Hg in maize seedlings, but it was significantly lower than that under Hg stress. A small amount of Hg in plants may come from maize seeds or hydroponic environment. With single Hg stress, the bioconcentration factor of V ((BF) V in maize seedlings decreased with increasing the V stress level, while BF of V and Hg increased first and then decreased with V–Hg combined stress. In contrast, the transport coefficient (TF) of V showed a decreasing trend, while the TF of Hg decreased first and then increased.

Source: https://www.ncbi.nlm.nih.gov/pubmed/30683955

Spectral insight into thiosulfate-induced mercury speciation transformation in a historically polluted soil (2019)

Treatments	Initial soil (0 day)	Rape soil (191 days)	Corn soil (276 days)	Potato soil (365 days)
Control	$0.25 \pm 0.02a$	$1.88 \pm 0.04a$	$1.98 \pm 0.04a$	1.60 ± 0.06a
Ts0.5	$0.18 \pm 0.03a$	$2.54\pm0.05b$	$1.77 \pm 0.03b$	$1.96\pm0.04\mathrm{b}$
Ts2	$0.28\pm0.01a$	$2.77\pm0.06c$	$2.02\pm0.06a$	$1.91 \pm 0.05b$
Ts5	$0.24 \pm 0.01a$	$2.22\pm0.08d$	$1.60\pm0.02c$	$1.79\pm0.08b$

Table: Bioavailable Hg content in the rhizosphere soils (ng g-1, mean \pm sd, n = 3).

The bioavailable Hg contents in the rhizosphere soils in different treatments are shown. The contents of bioavailable Hg in the initial soils ranged from 0.18 to 0.28 ng g⁻¹, which were significantly lower than those in the soils collected on days 191, 276, and 356 (1.60 to 2.77 ng g⁻¹) in both the control and thiosulfate treatments. This indicates that both the growth of plants and application of thiosulfate to the soil resulted in a mobilization of Hg in the soils compared to the initial soils. Further compared the bioavailable Hg contents in the soils between the control and thiosulfate treatments, which were took on days 191, 276, and 356, respectively, and did not observe a significantly increase in bioavailable Hg contents in thiosulfate treatments as compared to that in the control soils at each sampling campaign (except for days 191). It appears that the effect of thiosulfate treatments on Hg mobilization in the soils is of the same magnitude as the effect of the plants grown in the non-treated soils.

Source: https://www.sciencedirect.com/science/article/pii/S0048969718348502

Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms (2019)

Table: Ranges and average of bioaccumulation factor (roots/growth medium) and translocation factors (translocation factors: stems/roots; leaves/roots; leaves/stems), obtained during the exposure experiment, between the different plant organs of THg and MMHg, within H. portulacoides plants exposed to 199Hg(II) (1056 ng L⁻¹) and MM201Hg (24 ng L⁻¹) combined (n = 3; average \pm SD).

Metal	199Hg(II)	MM201Hg
Bioaccumulation factor in roots	0.0025 ± 0.00020-3.5 ± 0.39	0.025 ± 0.0083-34 ± 15
	1.02 ± 1.2	12 ± 11
Translocation factor stems/roots	0.013 ± 0.00010-0.028 ± 0.0052	0.0072 ± 0.0018–0.99 ± 0.17
(TF S/R)	0.022 ± 0.011	0.12 ± 031
Translocation factor leaves/roots	0.17 ± 0.11–4.03 ± 0.56	0.038 ± 0.0055–0.59 ± 0.025
(TF L/R)	0.027 ± 0.059	0.042 ± 0.11
Translocation factor leaves/stems	0.0023 ± 0.0018-0.18 ± 0.0070	0.00027 ± 0.000030-0.34 ±
(TF L/S)	0.78 ± 0.14	0.0300.36 ± 0.19

Source: https://www.sciencedirect.com/science/article/pii/S0048969718333060

Responses of the grass Paspalum distichum L. to Hg stress: A proteomic study (2019)

Physiological index (Hg/Control)	Control	Hg contamination	Change fold (Hg/Control)
Root length (cm) Root fresh weight (g·plant ⁻¹)	19.0 ± 1.80 0.83 ± 0.05	$\frac{18.0 \pm 0.51}{0.71 \pm 0.03}^{*}$	1.06 1.17
Root dry weight (g·plant ⁻¹)	0.031 ± 0.001	0.027 ± 0.001	1.15

Table: Effect of Hg stress on growth characteristics of Paspalum distichum L.

Statistically significant differences are indicated with asterisks: () p < 0.05 or () p < 0.01. Data are given as means \pm standard deviation (Naghipour).

Quantitative analysis showed that root length and root dry weight was significantly decreased by 14.7% and 16.0%, respectively (p < 0.05), compared with the control. No significant dif- ferences were observed in leaf length or leaf weight (p > 0.05).

Source: https://www.sciencedirect.com/science/article/pii/S0147651319308802

Sources, toxicity, and remediation of mercury: an essence review (2019)

Table: Global Hg concentration in vegetable and tree species growing on Hg-contaminated soil.

Country/regions	Vegetable/tree species	Hg (mg/kg)	References
China	Solanum lycopersicum Cucumis sativus	$\begin{array}{c} 0.0718 \pm 0.012 \\ 0.0384 \pm 0.0014 \end{array}$	Li et al. 2017
	Lactuca sativa	0.039 ± 0.0044	
China	Leafy vegetables (n = 28) Fruit vegetables (n = 62)	$\begin{array}{c} 0.002 \pm 0.001 \\ 0.0003 \pm 0.0002 \end{array}$	Hu et al. 2017
	Rootstalk vegetables ($n = 30$)	0.0003 ± 0.0001	
Cambodia	Brassica oleracea var. capitata	0.000256	Cheng et al. 2013
	Dacuscarota	0.00167	
	Cucumis sativus	0.00015	
Spain	Agrocybeaegerita Boletus aereus	$\begin{array}{c} 0.20 \pm 0.17 \\ 8.00 \pm 3.24 \end{array}$	Ostos et al. 2015
	Amanita caesarea	0.81 ± 0.14	
Saudi Arabia	Allium cepa Brassica oleracea var. capitata	$\begin{array}{c} 0.027 \pm 0.001 \\ 0.0143 \pm 0.001 \end{array}$	Ali and Al-Qahtani 2012
	Solanum tuberosum	0.0123 ± 0.001	
Serbia/Belgrade	Aesculus hippocastanum	0.1	Tomašević et al. 2004
	Tilia	0.2	
India/Korba coal basin, Chhattisgarh	Mangifera indica $(n = 5)$	0.17	Patel et al. 2015
	Butea monosperma $(n = 5)$	0.76	
	<i>Tectona grandis</i> $(n = 5)$	0.13	
	Azadirachta indica $(n = 5)$	0.36	

n number of samples; mean \pm standard deviation

Vegetables growing in Hg-contaminated soil become contaminated due to the uptake of Hg in their roots and edible parts. Several tree species growing on Hg contaminated soil are also affected by the deposition of Hg-laden FA and mine dust and the uptake of Hg from the soil. Li et al. (2017) reported Hg concentrations in vegetables growing near a coal-fired TPP region and found that the vegetable species *Solanum lycopersicum*, *Cucumis sativus*, and *Lactuca sativa* contained 0.0718, 0.0384, and 0.039 mg Hg/kg, respectively.

Source: https://www.ncbi.nlm.nih.gov/pubmed/31418123

Soil mercury speciation and accumulation in rice (ORYZA SATIVA L.) grown in wastewater-irrigated farms (2018)

Table 1: The detailed information of the studied catchm	ents in Tianjin
---	-----------------

Study site	Wastewater irrigation area	Wastewater irrigation age	Crops of wastewater irrigation	Soil type	Wastewater sources
BJR	8.35 × 10 ⁴	20	Rice,wheat	Loamy and sandy fluvo-aquic soil; Salt clay fluvo- aquic soil in southeast	Wastewater is originated from Beijing, including industrial and demotic waste water.
BTR	1.20×10^{4}	25–34	Rice,wheat, vegetables	Loamy fluvo-aquic soil; Salt clay fluvo- aquic soil	Wastewater is originated from industrial waste water in Dongli.
DGR	2.33 × 10 ⁴	15–43	Rice, dry crops, vegetables	Loamy fluvo-aquic soil in west; salt and clayey fluvo- aquic soil in west	Wastewater is originated from industrial and demotic waste water in urban district of Tianjin and Xiqing
HHR	Control area		Rice, wheat, vegetables	salt and clayey fluvo- aquic soil; Loamy and sandy fluvo-aquic soil	Wastewater is originated from demotic waste water urban district of Tianjin and Ninghe.

Table 2: List and analytical results of CRMs used in this study

Produce r	CRM	Matrix	n	Element (ng/g)	Obtained value	Certified value	Recover y (%)
IGGE IRMA	GBW07403(GSS-3)	Yellow- brow soil	1 2	THg	598 ± 79	590 ± 80	101 ± 13
IGGE, CAGS	GBW10020	Citrus Leaves	1 5	THg	145 ± 11	$\begin{array}{r} 150 \pm \\ 20 \end{array}$	97 ± 8
NRCC	TORT-2	Lobster	8	MeHg	145 ± 8	152 ± 13	96 ± 17
IAEA	IAEA-405	Sediment	5	МеНд	$5.20 \pm \\ 0.31$	5.49 ± 0.53	95 ± 6

Table 3: The linear correlation coefficients (r) between different tissues of rice plants for their Hg concentrations by using Pearson's correlation matrix.

Ite m	IHg	MeHg						
	Soil	Root	Stem	Leaf	Soil	Root	Stem	Leaf
Ro ot	0.91				0.98			
Ste m	0.91	0.93			0.96	0.93		
Lea f	0.85	0.89	0.95		0.93	0.93	0.92	
Gr ain	0.58	0.61	0.69	0.64	0.93	0.91	0.92	0.90

Source: https://www.sciencedirect.com/science/article/pii/S0883292717303736#!

Plant mediated detoxification of mercury and lead (2017)

Metal contaminant	Permissible level (ppm)	Health hazards	Major sources
Lead, Pb	0.1	Mental retardation in children, Liver, Kidney, gastrointestinal damage(GIT), causes sterility, anemia, muscle and joint pains, Hypertension	Paint, pesticides, smoking, batteries, water pipes, automobile emission, mining, burning of coal, lamps
Mercury, Hg	0.01	Corrosive to skin, eyes and muscle membrane. Dermatitis, nervous and kidney damage, anorexia, protoplasm poisoning, severe muscle pain	Pesticides, batteries, paper and leather industry, thermometers, electronics, amalgam in dentistry, pharmaceuticals
Arsenic, As	0.02	Bronchitis, carcinogenic dermatitis, liver tumors, gastrointestinal damage (GIT)	Pesticides, fungicides, metal smelters, Coal fumes, Wood Preservatives
Zinc, Zn	5.0	Nervous membrane and skin damage, Causing short term illness called metal fume fever and restlessness	Refineries, brass manufacture, metal plating, plumbing
Cadmium, Cd	0.06	Kidney damage, bronchitis, carcinogenic, gastrointestinal disorder, bone marrow, cancer, weight loss	Welding, electroplating, pesticides, fertilizers, CdNi batteries, nuclear fission plant
Chromium, Cr	0.01	Allergic dermatitis, producing lung tumors, human carcinogens	Steel industry, mining, cement, paper, rubber, metal alloy paints
Copper, Cu	3.0	Long term exposure causes irritation of nose, mouth, eyes, headache, stomachache, dizziness, diarrhea	Brass manufacture, electronics, electrical pipes, additive for antifungal
Nickel, Ni	3.0	Causes chronic bronchitis, reduced lung function, nasal sinus, cancer of lungs	Steel industry, mining, magnetic industry

Table 1: Types of heavy metals, permissible level, health hazards and sources.

Table 2: Summary about phytoremediation techniques.

Phytoremediation techniques	Action mechanism	Medium treated	Contaminant
Phytoextraction	Direct accumulation of contaminants into plant shoots with subsequent removal of the plant shoots	Soil	Inorganics
Rhizofiltration	Absorb and adsorb pollutants in plant roots	Surface water and water pumped through roots	Inorganics/Organics
Phytostabilization	Root exudates cause metals to precipitate and biomass becomes less bioavailable	Groundwater, soil, mine tailings	Inorganics
Phytodegradation	Microbial degradation in the rhizosphere region	Groundwater within the rhizosphere and soil	Organics
Phytovolatilization	Plants evaporate certain metal ions and Soil, groundwater volatile organics		Inorganics/Organics
Phytotransformation	Plant uptake of organic contaminants and degradation		
Removal of aerial contaminants	Uptake of various volatile organics by leaves	Air	

Table 3: Some examples of selective detoxification of mercury and lead by biosorbents as plant material.

Plant material	Metal ion	Result	Reference
Carica papaya wood	Hg (II)	96%	Basha et al. (2009)
<i>Ricinus communis</i> L. (Castor) leaves	Hg (II)	80%	Rmalli et al. (2008)
Sawdust (Acacia arabica)	Pb(II), Hg (II), Cr (VI), Cu(II)	Pb > Cr > Cu and Hg	Meena et al. (2008)
Oriza sativa husk	Pb(II)	98%	Zulkali et al.(2006)
Agricultural by product <i>Humulus lupulus</i>	Pb(II)	75%	Gardea-Torresdey et al. (1998)
Agro waste of black gram husk	Pb(II)	Up to 93%	Saeed et al. (2005)
Febrifuga bark	Pb(II)	100%	Bankar and Dara (1985)
Waste tea leaves	Pb (II)	92%	Ahluwalia and Goyal (2005)
Rice bran	Pb (II), Cd (II), Cu (II), Zn (II)	>80.0%	Montanher et al. (2005)
Saw dust of Pinus sylvestris	Pb (II), Cd (II)	96%, 98%	Taty-Costodes et al. (2003)
Maple saw dust	Pb (II), Cu (II)	80–90%	Yu et al. (2001)
Water hyacinth	Pb (II), Cu (II), Co (II), Zn (II)	70–80%	Kamble and Patil (2001)
Low cost sorbents (bark, dead biomass, chitin, sea weed, algae, peat moss, leaf mold, moss	Pb (II), Hg (II), Cd (II), Cr (VI),	Good results	Bailey et al. (1999)
Rice straw, soybean hulls, sugarcane bagasse, peanut and walnut shells	Pb (II), Cu (II), Cd (II), Zn (II),Ni (II)	Pb > Cu > Cd > Zn > Ni	Johns et al. (1998)

Source: https://www.sciencedirect.com/science/article/pii/S1878535213002712

Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of *Cicer arietinum L*. (2016)

Table: Effect of bacterial consortium on growth promotion of Chickpea (Cicer arietinum L.) grown in mercury amended and non-amended soil

Treatments growth attributes	-C+HgCl ₂ ^a (Control)	$-C - HgCl_2^{b}$	$+C + HgCl_2^{c}$	$+C - HgCl_2^d$
Germination	60 ± 0.5 (a)	70 ± 0.5 (b)	80 ± 0.6 (c)	90 ± 0.6 (d)
(%)				
Shoot length (cm)	46 ± 0.5 (a)	47 ± 0.6 (a)	56 ± 0.6 (b)	57 ± 0.5 (b)
Root length (cm)	14 ± 0.5 (a)	15 ± 0.6 (a)	21 ± 0.6 (b)	22 ± 0.6 (b)
Shoot fresh weight (g)	2.6 ± 0.5 (a)	3.6 ± 0.5 (a)	5.6 ± 0.6 (b)	6.6 ± 0.6 (b)
Root fresh weight (g)	0.2 ± 0.4 (a)	0.2 ± 0.5 (a)	0.3 ± 0.6 (b)	0.3 ± 0.4 (b)
No. of pods/plant	4 ± 0.5 (a)	5 ± 0.5 (a)	7 ± 0.6 (b)	8 ± 0.6 (b)
No. of seeds/pod	1 ± 0.3 (a)	1 ± 0.3 (a)	2 ± 0.3 (a)	2 ± 0.3 (a)
Weight of seed (g)	0.2 ± 0.05 (a)	0.2 ± 0.06 (a)	0.4 ± 0.05 (a)	0.4 ± 0.06 (a)

The results shown are mean of three independent experiments \pm standard error. The p < 0.05 was calculated by ANOVA. The different letters (a–d) indicate significant difference between means of each treatments calculated by Duncan's multiple range test (p = 0.05).

^a Without bacterial culture and with HgCl₂.

^b Without bacterial culture and HgCl₂.

^c With bacterial culture and HgCl₂.

^d With bacterial culture and without HgCl₂.

Source: https://onlinelibrary.wiley.com/doi/full/10.1002/jobm.201600352

Moringa oleifera Lam. leaf extract as bioregulatorfor improving growth of maize under mercuricchloride stress (2016)

Table 1: Effect of MALE and HgCl₂on seed germination and seedling growth of maize

Treatments	Germination (%)	Shoot fresh weight (g)	Shoot dry weight (g)	Root fresh weight (g)	Root dry weight (g)
Control	100 ± 5.01^{a}	1.148 ±0.065 ^{cd}	0.171 ±0.039 ^{bc}	0.677 ± 0.098^{bcd}	0.156 ± 0.014^{a}
1 mg/kg HgCl ₂	$76.0 \pm 3.78^{\circ}$	0.649 ± 0.041^{d}	0.024 ± 0.005^{d}	0.377 ± 0.067^{d}	0.096 ± 0.051^{bc}
0.5 mg/kg HgCl ₂	90.67 ± 7.00^{b}	0.993 ± 1.040^{d}	0.131 ±0.019 ^c	$0.477 \pm 0.059c^{d}$	$0.050 \pm 0.078^{\circ}$
5%MALE +1 mg/kg HgCl ₂	100 ± 6.01^{a}	1.747 ±0.039a ^b	$0.242 \pm 0.037a^{b}$	1.032 ±0.132 ^{ab}	0.143 ±0.091 ^{ab}
2.5%MALE+ 1 mg/kg HgCl ₂	100 ± 8.09^{a}	1.591 ±0.071 ^{bc}	0.196 ±0.056 ^{bc}	0.814 ±0.093 ^{bc}	0.141 ±0.086 ^{ab}
5%MALE +0.5 mg/kg HgCl ₂	100 ± 4.11^{a}	2.187 ±1.120 ^a	0.292 ± 0.069^{a}	1.358 ± 0.254^{a}	0.188 ±0.034 ^a
2.5%MALE+ 0.5 mg/kg HgCl ₂	100 ± 5.00^{a}	1.993 ±0.065 ^{ab}	0.220 ± 0.028^{ab}	1.408 ±0.142 ^a	0.186 ± 0.076^{a}
LSD	4.347	0.540	0.084	0.413	0.056

Means sharing a common English letter are statistically similar. The \pm represents value of standard error. MALE, Moringa oleifera aqueous leaf extract.

Table 2: Effect of MALE and $HgCl_2$ on leaf photosynthetic pigments and total soluble phenolics of maize.

Treatments	Chlorophyll (mg/g F.W)	Carotenoids (mg/g F.W)	Total soluble phenolics in roots (µg/g F.W)
Control	11.06 ± 0.581^{bc}	2.865 ± 0.014^{b}	28.93 ± 4.915^{d}
1 mg/kg HgCl ₂	4.20 ± 1.712 ^d	2.867 ± 0.051^{b}	$81.04 \pm 5.912^{\circ}$
0.5 mg/kg HgCl ₂	6.93 ± 3.901^{cd}	3.354 ± 0.813^{b}	$77.33 \pm 7.990^{\circ}$
5%MALE + 1 mg/kg HgCl ₂	12.63 ± 2.001^{ab}	$7.452 \pm 1.253^{\circ}$	138.54 ± 6.712^{a}
2.5%MALE + 1 mg/kg HgCl ₂	13.63 ± 4.091^{ab}	3.225 ± 0.710^{b}	89.67 ± 5.312 ^{bc}
5%MALE + 0.5 mg/kg HgCl ₂	16.88 ± 6.171^{a}	2.580 ± 0.513^{b}	104.33 ± 9.008^{b}
2.5%MALE + 0.5 mg/kg HgCl ₂	13.56 ± 3.512^{ab}	3.422 ± 0.961^{b}	82.73 ± 7.012b ^c
LSD	4.347	1.055	2.160

Notes: Means sharing a common English letter are statistically similar. The ± represents value of standard error. MALE, *Moringa oleifera* aqueous leaf extract.

Source: https://www.tandfonline.com/doi/full/10.1080/09064710.2016.1173225

Accumulation Of Mercury In Selected Plant Species Grown In Soils Contaminated With Different Mercury Compounds (2016)

Treatment	Hg in shoots(mg/kg)	Hg in roots(mg/kg)	Shoot biomass (dry weight g)	Final Hg in soil (mg/kg)
F4HgT0 (Control)	0.38 (0.53) c†	BD#	6.1 (1.6)	BD
F4HgT1 (250mg/kg)	123 (88) b	749 (330) b	5.9 (1.6)	85 (23) c
F4HgT2 (500mg/kg)	540 (393) b	1525 (786) b	3.9 (1.1)	207 (43) b
F4HgT3 (1000mg/kg)	1469 (761) a	6802 (3325) a	3.9 (0.3)	413 (77) a

Table 1: Biomass and mercury concentration in Chinese brake fern.

*The numbers in parenthesis indicate standard deviation.

BD-below detection limit.

+ Means followed by a different letter are significantly different at the 0.05 probability level, grouped into classes a, b and c

Table 2: Mercury concentrations in Beard grass shoots and roots and soil (average with standard deviation).

Treatment	Hg in shoots(mg/kg)	Hg in roots(mg/kg)	Hg in soil(mg/kg)
G5HgT0(Control)	6.08(3.89)	9.73(10.7)	BD
G5HgT1(250 mg/kg)	40(27)	1579(855)	85(23)
G5HgT2(500 mg/kg)	26(12)	2241(1101)	207(43)
G5HgT3(1000 mg/kg)	65(40)	2298(468)	413(77)

Numbers in parenthesis indicate standard deviation. BD—below the detection limit.

Table 3: Mercury concentrations in shoots and roots of Indian mustard grown in aged soils contaminated by $Hg(NO_3)_2$, $HgCl_2$, and HgS (average with standard deviation).

Treatment	Hg in shoots (mg/kg)	Hg in roots (mg/kg)	Original Hg in soil (mg/kg)
Hg(NO ₃) ₂	2.1 (2.5)	24 (17)	100
HgCl ₂ –1	0.8 (0.8)	26 (11)	100
HgCl ₂ –2	12 (22)	110 (39)	250
HgCl ₂ –3	325 (287)	1775(1096)	1000
HgS–1	35 (29)	17 (11)	1000
HgS–2	79 (51)	87 (43)	2000

Table 3: Mercury concentrations in shoots and roots of plants grown in sunlit chamber. The plants were grown in mercury-contaminated soil, but the plant shoots were protected from gaseous mercury from soil.

Plant	Hg in shoots (mg/kg)	Hg in roots (mg/kg)
Indian mustard	19.60	663.77
(Longstanding variety)	(20.00)	(34.03)
Indian mustard	11.23	230.56
(Broadleaf variety)	(3.06)	(27.00)
Chinese brake fern	11.62	327.45
	(7.87)	(121.74)

Source:

https://www.researchgate.net/publication/236475521_Accumulation_of_Mercury_in_Selected_Plant_Species_Grown_in_Soils_C ontaminated_With_Different_Mercury_Compounds