Metal/Metalloid Numerical Data

Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China (2021)

Table 1: Impact of heavy metal ions in risk-inducing herbal medicines on humans and values of EDI (estimated daily intakes) and CR (carcinogenic risks) based on literature review.

У	RfD ₀	Repr	esentative herbs (11	8 kinds,	1902 samples)	Health effects	References
metals	(US	Max	Related	Max	Related		
	EPA, 2000)	EDI	examples	CR	examples		
	2000) (mg kg ⁻	¹ dav ⁻¹					
	bw	7)					
Pb	0.004	0.004	Lonicera confusa DC., Tetradium ruticarpum (A. Juss.)	1.23E- 07	Tetradium ruticarpum (A. Juss.)	Adverse effect on the blood, nervous, immune, renal, skeletal, muscular, reproductive, and	(Dghaim et al., 2015, Martin and Griswold,
		0.005	<i>Lonicera japonica</i> Thunb.	1.15E- 07	Plantago asiatica L.	cardiovascular systems causing, poor muscle	2009, Luo et al., 2021)
		0.008	<i>Grona</i> styracifolia (Osbeck) H. Ohashi and K. Ohashi	8.07E- 08	<i>Lonicera japonica</i> Thunb.	coordination, gastrointestinal symptoms, brain and kidneys damage, hearing and vision impairments, reproductive defects, slowed cognitive	
		0.024	Plantago asiatica L.	4.54E- 08	Lonicera confusa DC.	development, learning deficits, can damage the testicles in men, ultimately cause death.	
As	0.0003	0.002	<i>Cornus officinalis</i> Siebold and	1.34E- 06	Plantago asiatica L.	Decreased production of hemoglobin, red blood cells	(Kapaj et al., 2006, Rana et
			Zucc., <i>Taraxacum</i> officinale (L.) Weber ex	1.09E- 06	<i>Cornus</i> officinalis Sieb. et Zucc.	and white blood cells, abnormal heart rhythm, hypertension, diabetes,	al., 2018, Ray et al., 2014, Luo et al.,
		0.007	Plantago asiatica L.	9.20E- 07	TaraxacMm mongolicum HandMazz.	cardiovascular disease, skin lesions, hyperpigmentation, keratosis, and	2021)
				7.43E- 07	Andrographis paniculate (Burm. f.)	neurodegenerative disolders.	

					Nees		
Cd	0.001	0.001	Andrographis	1.55E-	Curcuma	Irreversible impairment of	(Dghaim et
			paniculata	06	longa L.	the renal tract; serious	al., 2015, Li
			(Burm.f.) Nees,	1.39E-	Rheum	damage of liver, lungs,	et al., 2012,
			Curcuma longa	06	palmatum L.	vascular and immune	Martin and
			L., Lonicera	1.23E-	Houttuynia	system; fragile bones,	Griswold,
			confusa DC.	06	cordata	to vomiting and diarrham	2009, Maobe
		0.000	77	1.100	Thunb.	to volinting and diarmea.	$L_{\rm HO}$ et al
		0.002	Houttuynia	1.12E-	Lonicera		2021)
II-	0.0001	0.001	<i>Coraata</i> Thund.	00	<i>confusa</i> DC.	Numerous deleterious offecto	(Luc et al
Hg	0.0001	0.001	Chrysanthemum	2.18E-	Anarographis	Numerous deleterious effects	(Luo et al., 2021 Bara at
			Indicum L., Eorrythia	00	(Purm E)	body within the digestive	2021, Kalla et
			rorsyinia		(Durin, F.)	immune urinary nervous	al., 2010, Khan et al
			(Thunb) Vahl	1 72F-	Plantago	systems arrhythmias	2019)
			Tussilago farfara	06	asiatica L	cardiomyopathy, respiratory	_017)
			L.	1.64E-	Cornus	failure and kidney damage.	
				06	officinalis		
					Sieb. et Zucc.		
				1.60E-	Curcuma		
				06	longa L.		
Cu	0.04	0.015	Plantago asiatica	—	-	Dermatitis, irritation of the	(Dghaim et
			L.			upper respiratory tract,	al., 2015, Luo
		0.012	Desmodium			abdominal pain, nausea,	et al., 2021,
			styracifolium			diarrhea, vomiting, liver	Kohzadi et
			(Osb.) Merr.			damage.	al., 2018)
		0.008	Houttuynia				
	0.0	0.100	<i>cordata</i> Thunb.				
Zn	0.3	0.100	Zantedeschia	-	-	Toxic effects on the immune	(Dghaim et
			aethiopica (L.)			system, blood lipoprotein	al., 2015, Luo
			Spreng., <i>viola</i>			levels, and copper level.	et al., 2021, Kohradi at
			ouoraia L.				$rac{1}{2}$
Fe	07	0.850	Viola odorata I	_	_	Gastrointestinal effects such	(Dghaim et
10	0.7	0.050	Matricaria			as gastrointestinal bleeding.	al., 2015, Luo
			chamomilla L.			nausea and vomiting.	et al., 2021.
						dizziness, diarrhea, joints	Kohzadi et
						pain, shock, and liver	al., 2018)
						damage, hypotension,	
						lethargy, tachycardia, hepatic	
						necrosis, metabolic acidosis	
						and sometimes dead.	

RfDo: International oral reference dose values for the heavy metals, EDI: Estimated daily intake (theoretical value without being corrected for % solubilization and bioavailability), CR: Carcinogenic risks. Acceptable risk levels for CR range from 10^{-4} (risk of developing cancer over a human lifetime is 1 in 10,000) to 10^{-6} (risk of developing cancer over a human lifetime is 1 in 1,000,000). (Adusei-Mensah et al., 2019). The EDI and CR scores in this table were calculated with maximal concentrations of each herbal medicine.

Table 2: The comparison between studies about heavy metal pollution to soils in China and elsewhere in the world (Huang et al., 2019b).

Element (mg/kg)	Cd	Cr	Hg	As	Pb	Cu	Zn	Ni	Review/scope of monitoring	Reference
Chinese agricultural soils	0.24	62.2	0.13	10.7	32.1	28.3	83.3	28.2	Review (336 articles)	(Huang et al., 2019b)
Chinese agricultural soils	0.43	58.9	0.24	10.2	37.6	31.7	117.2	27.5	Review (12 articles)	(Wei and Yang, 2010)
Chinese agricultural soils	0.25	65.3	0.16	9.5	34.9	30.7	85.3	30.7	Field (138 samples)	(Song et al., 2013)
Chinese farmland soils	0.17	60.7	—	—	_	26.6	85.6	29.5	Field (131 samples)	(Niu et al., 2013)
North China soils South China soils	0.56 0.62	31.5 12.6	0.07 0.08	4.18 2.47	33.3 18.9	16.3 18.8	129.8 88.6	16.4 4.89	Field (4445 samples)	(Peng et al., 2019)
Chinese soil	0.23	68.5	0.09	12.1	31.2	27.1	79.0	29.6	Field (38,393 samples)	(Chen et al., 2015)
China urban soil	0.39	68.5	0.31	12.2	55.2	40.4	109.0	24.9	Review (21 cities)	(Luo et al., 2012)
China mining areas	3.76	67.3	0.18	20.6	196.4	88.8	241.9	45.4	Review (72 mines)	(Li et al., 2014)
World soils	0.35	40	0.07	7.2	2– 300	30	90	20	Review	(Adriano, 2001)
England and Wales	0.33	68	—	15	49	19	76	21	Field (131 samples)	(Rawlins et al., 2012)
Europe	0.18	64	—	7	21	15	62	21	Field (5691 samples)	(Reimann et al.,
Australia	0.04	48	-	3	13	11	31	15	Field (2211 samples)	2012)
United States of America	0.34	-	-	-	15	30	75.8	27.1	Field (3045 samples)	(Holmgren et al., 1993)
Peninsular Malaysia	0.12	25.9	0.15	16.8	26.4	16.4	38.0	13.7	Field (241 samples)	(Zarcinas et al., 2004a)
Thailand	0.03	25.2	0.04	7.5	17.5	7.5	23.9	13.5	Field (318 samples)	(Zarcinas et al., 2004b)

Table 3: Examples of national limits for heavy metals in herbal medicine and medicinal products (mg/kg, dry weight).

ountry/Region	Scope	Cu (mg/kg)	Pb (mg/kg)	As (mg/kg)	Cd (mg/kg)	Hg (mg/kg)	References
ISO international standards	СНМ	-	10.0	4.0	2.0	3.0	ISO (International Organization for Standardization) 18664:2015 (2015)
World Health Organization (WHO)	НМ	_	10.0	1.0	0.3	_	Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues (WHO, 2007)
European Union	НМ	_	5.0	_	1.0	0.1	European Union Pharmacopeia, EP 10.2 (European Pharmacopoeia Committee, 2019)
China	СНМ	20.0	5.0	2.0	0.3	0.2	Pharmacopoeia of the Peoples Republic of China (China Pharmacopoeia Commission, 2015) Pharmacopoeia of the Peoples Republic of China (China
							Pharmacopoeia Commission, 2020)
Chinese green standards	HM	20.0	5.0	2.0	0.3	0.2	Green standards of medicinal plants and preparations for foreign trade
							and economy, WM/12-2004 (Liu et

							al., 2018a)
Hong Kong, China	СНМ	150.0	5.0	2.0	1.0	0.2	Hong Kong Chinese Materia Medica Standards 2018 (Yang et al., 2021)
Macau, China	CHM/RM	150.0	20.0	5.0	-	0.5	Macau Technique Directive 02-2003 Despacho No. 10/SS/2013 (Li et al., 2018b)
Taiwan, China	CHM	_	5.0	3.0	1.0	0.2	Taiwan Herbal Pharmacopeia (2019)
	HP	-	10.0	3.0	0.5	0.5	Regulation for Registration of Medicinal Products (Liu et al., 2015)
Poland	RM	20	1.0	-	0.1	-	Polish Ministry of Health Act 1993 (Krejpcio et al., 2007)
Italy	RM	-	3.0	-	0.5	0.3	Italian Pharmacopeia (FUI) 2002 (Chowdhary and Raj, 2020)
United Kingdom	HM	-	5.0	5.0	1.0	0.1	British Herbal Pharmacopoeia (2018)
Germany	HM	-	5.0	-	0.2	0.1	German Pharmacopoeia (Deutsches Arzneibuch – DAB) (2018)
Australia	HM	-	5.0	-	1.0	0.1	Therapeutic Goods Administration (TGA) (Li et al., 2018b)
Singapore	CHM/RM	150.0	20.0	5.0	5.0	0.5	Health Sciences Authority (HSA), Health Products (Therapeutic Products) Regulations 2016 (Vohora and Singh, 2018)
	HP	—	20.0	5.0	—	0.5	(Liu et al., 2015)
		-	10.0	5.0	0.3	0.5	Health Sciences Authority (HSA (2020))
India	HM	-	10.0	3.0	0.3	1.0	The Ayurvedic Pharmacopoeia of India 2019 (Debnath et al., 2020)
Japan	RM	20.0	20.0	5.0	-	-	The Japanese Pharmacopoeia (2016)
Malaysia	TPP	_	10.0	5.0	0.3	0.5	Drug Registration Guidance Document (DRGD), (National Pharmaceutical Regulatory Division, Ministry of Health Malaysia, 2019)
South Korea	RM	-	5.0	3.0	0.3	0.2	The Korea Pharmacopoeia (Jeong et al., 2020b)
Thailand	НМ	_	10.0	4.0	0.3	_	Thai Herbal Pharmacopoeia, Traditional Formularies of Herbal Medicines (Mukherjee, 2019)
Vietnam	HM	-	10.0	4.0	1.0	0.5	Vietnamese Pharmacopoeia 2005 (Zhao et al., 2009)
United States of America	DS	-	10.0	5.0	0.3	0.2	National Sanitation Foundation International (NSFI) Draft Standard 173-2008 (Harris et al., 2011)
	HM	-	5.0	2.0	0.3	0.2	NSFI Draft Standard 173-2001 (2001)
	RM	-	0.5	1.5	2.5	1.5	The United States Pharmacopeia (US Pharmacopoeia Convention, 2012)
	DS	-	1.0	1.5	0.5	1.5	USP 2232 (Liu et al., 2015)
Canada	HM	-	10.0	5.0	0.3	0.2	(Gupta et al., 2010)

CHM: Chinese herbal medicine, DS: Dietary supplements, HM: Herbal medicine, HP: Herbal products, RM: Raw material, TPP: Traditional pharmaceutical preparation.

parts of		Pb			As			Hg			Cd	
СНМ	Size (num)	x±s (mg/kg)	Over - limit ratio (%)	Size (num)	x±s (mg/kg)	Over - limit ratio (%)	Size (num)	x±s (mg/kg)	Over - limit ratio (%)	Size (num)	x ± s (mg/kg)	Over - limit ratio (%)
Root and rhizom e ^I	1245	2.58 ± 29.8 6	2.17	1032	0.89±2.59	3.97	988	$\begin{array}{c} 0.11 \pm 0.4 \\ 3 \end{array}$	0.71	1168	$\begin{array}{c} 0.31\pm0.9\\2\end{array}$	2.23
Flower ^I	144	$\begin{array}{c} 7.92\pm25.8\\ 5\end{array}$	6.94	115	4.45 ± 13.1 5	9.71	98	$\begin{array}{c} 0.45 \pm 1.1 \\ 8 \end{array}$	5.10	135	$\begin{array}{c} 0.68 \pm 1.8 \\ 7 \end{array}$	8.89
Leaf ^{III}	40	3.80 ± 3.50	7.50	28	1.10 ± 1.43	10.71	19	$\begin{array}{c} 1.68\pm6.1\\ 7\end{array}$	10.53	36	$\begin{array}{c} 0.29\pm0.3\\ 4\end{array}$	0
Whole herb ^{IV}	207	$\begin{array}{c} 13.66\pm2.6\\ 4\end{array}$	3.86	175	1.95 ± 5.26	7.88	134	$\begin{array}{c} 0.17 \pm 0.6 \\ 0 \end{array}$	2.24	196	$\begin{array}{c} 0.44\pm0.6\\ 7\end{array}$	5.10
Fruit and seed ^V	364	1.38 ± 2.64	1.10	284	0.43 ± 1.72	1.05	270	$\begin{array}{c} 0.19 \pm 1.5 \\ 3 \end{array}$	1.11	331	$\begin{array}{c} 0.09\pm0.1\\ 3\end{array}$	0
Stem ^{VI}	39	6.02 ± 7.95	15.38	41	0.80 ± 1.81	2.56	34	$\begin{array}{c} 0.31 \pm 1.1 \\ 4 \end{array}$	2.94	38	$\begin{array}{c} 1.15\pm2.1\\ 8\end{array}$	13.16
Peel and bark ^{VII}	121	2.48 ± 3.00	3.31	109	0.36 ± 0.53	0	101	$\begin{array}{c} 0.07\pm0.1\\ 0\end{array}$	0	93	0.16 ± 0.1 9	0

Table 4: Statistics of heavy metal pollution in different medical sites.

Examples of the medical parts of CHM based on Pharmacopoeia of the Peoples Republic of China: I – Notoginseng Radix et Rhizoma of Panax notoginseng (Burk.) F. H. Chen, Zingiberis Rhizoma of Zingiber officinale Rosc., Panacis Quinquefolii Radix of Panax quinquefolium L., Corydalis Rhizoma of Corydalis yanhusuo W. T. Wang, Ophiopogonis Radix of Ophiopogon japonicus (L. f) Ker-Gawl, Polygonati Rhizoma of Polygonatum sibiricum Red., Glycyrrhizae Radix Et Rhizoma of Glycyrrhiza uralensis Fisch., Puerariae Lobatae Radix of Pueraria lobata (Willd.) Ohwi; II - Chrysanthemi Flos of Chrysanthemum morifolium Ramat., Lonicerae Japonicae Flos of Lonicera japonica Thunb., Croci Stigma of Crocus sativus L., Albiziae Flos of Albizia julibrissin Durazz., Sophorae Flos of Sophora japonica L., Caryophylli Flos of Eugenia caryophyllata Thunb., Gossampini Flos of Gossampinus malabarica (DC.) Merr., Rosae Chinensis Flos of Rosa chinensis Jacq.; III – Isatidis Folium of Isatis indigotica Fort., Mori Folium of Morus alba L., Ginkgo Folium of Ginkgo biloba L., Epimedii Folium of Epimedium brevicornu Maxim., Lophatheri Herba of Lophatherum gracile Brongn., Sennae Folium of Cassia angustifolia Vahl; IV – Centellae Herba of Centella asiatica (L.) Urb., Taraxaci Herba of Taraxacum mongolicum Hand.-Mazz., Prunellae Spica of Prunella vulgaris L., Solidaginis Herba of Solidago decurrens Lour., Plantaginis Herba of Plantago asiatica L.; V -Canavaliae Semen of Canavalia gladiate (Jacq.) DC., Anisi Stellati Fructus of Illicium verum Hook. f., Crataegi Fructus of Crataegus pinnatifida Bge., Schisandrae Chinensis Fructus of Schisandra chinensis (Turcz.) Baill., Cuscutae Semen of Cuscuta chinensis Lam., Ziziphi Spinosae Semen of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou, Coicis Semen of Coix lacryma-jobi L. var. mayuen (Roman.) Stapf; VI - Dendrobii Officinalis Caulis of Dendrobium officinale Kimura et Migo, Ephedrae Herba of Ephedra sinica Stapf, Perillae Caulis of Perilla frutescens (L.) Britt.; VII - Pseudolaricis Cortex of Pseudolarix amabilis (Nelson) Rehd., Acanthopanacis Cortex of Acanthopanax gracilistylus W. W. Smith, Mori Cortex of Morus alba L., Ailanthi Cortex of Ailanthus altissima (Mill.) Swingle.

Source: https://www.sciencedirect.com/science/article/pii/S0147651321004474#tb10005

Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment (2021)

	S1	S2	S 3	SC
рН	$8.62\pm0.07^{\rm a}$	8.10 ± 0.09^{b}	8.12 ± 0.06^{b}	$7.34\pm0.08^{\rm c}$
EC ($\mu s \ cm^{-1}$)	$648.37 \pm 5.06^{\mathrm{b}}$	$680.2 \pm 11.54^{\mathrm{a}}$	$372.56 \pm 10.16^{\circ}$	212.56 ± 3.30^{d}
OM (%)	$12.98 \pm 3.45^{\circ}$	24.05 ± 1.91^{b}	33.97 ± 0.95^{a}	39.20 ± 1.03^{a}
CaCO ₃ t (%)	34.07 ± 0.03^a	18.57 ± 0.99^{b}	$10.49 \pm 0.04^{\circ}$	$8.80\pm0.06^{\rm d}$
CaCO3a (%)	29.91 ± 1.52^{a}	20.03 ± 1.99^{b}	$14.90 \pm 1.18^{\circ}$	$4.48\pm0.48^{\rm d}$
Cr (ppm)	$18.92\pm0.10^{\rm a}$	2.77 ± 0.11^{b}	1.31 ± 0.14^{d}	$1.72 \pm 0.02^{\circ}$
Co (ppm)	2.20 ± 0.03^a	$0.20 \pm 0.05^{\circ}$	0.47 ± 0.06^{b}	$0.23 \pm 0.02^{\circ}$
Zn(ppm)	$14.96\pm0.03^{\mathrm{a}}$	7.47 ± 0.06^{b}	$6.76 \pm 0.04^{\circ}$	3.42 ± 0.04^{d}
Pb (ppm)	$83.86\pm0.97^{\rm a}$	$11.82 \pm 0.07^{\mathrm{b}}$	$5.17 \pm 0.03^{\circ}$	3.14 ± 0.04^{d}

*EC: Electrical Conductivity, OM: Organic Matter, $CaCO_{3T}$: Total carbonates, $CaCO_3$: Active carbonates.Data represent mean values \pm SD

Table 2: Perennial species density (n = 12) (mean \pm SD) in the sites; site 1(S1), site 2 (S2), site 3 (S3) and control site (SC).

Species					
	1	2	3	SC	p-value
Annarhinum brevifolium	$0.00 \pm 0.00^{\circ}$	$0.45\pm0.05^{\text{b}}$	0.92 ± 0.07^{a}	$0.00\pm0.00^{\rm c}$	*
Argylobum uniflorum	$0.00\pm0.00^{\mathrm{a}}$	$0.00\pm0.00^{\rm a}$	0.03 ± 0.02^{a}	$0.00\pm0.00^{\rm a}$	**
Aristada ciliata	0.02 ± 0.01^{a}	$0.00 \pm 0.00^{\mathrm{a}}$	$0.00 \pm 0.00^{\mathrm{a}}$	$0.00\pm0.00^{\mathrm{a}}$	**
Artemisia compestris	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	$0.07\pm0.03^{\rm a}$	$0.00 \pm 0.00^{\mathrm{b}}$	*
Artemisia herba alba	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	2.12 ± 0.37^a	*
Astragalus armatus	$0.00\pm0.00^{ m b}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	$0.07\pm0.02^{\rm a}$	**
Atractylis serratuloides	$0.43\pm0.05^{\rm a}$	0.32 ± 0.10^{ab}	$0.28\pm0.10^{\mathrm{b}}$	$0.07 \pm 0.04^{\circ}$	*
Deverra tortuosa	$0.00\pm0.00^{\mathrm{b}}$	$0.38\pm0.06^{\rm a}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	*
Erodium glaucophyllum	$0.15 \pm 0.03^{\rm b}$	0.28 ± 0.06^{ab}	0.35 ± 0.06^{a}	0.30 ± 0.16^{ab}	*
Gymnocarpos decander	$0.82\pm0.09^{\rm a}$	$0.87\pm0.08^{\rm a}$	$0.05 \pm 0.04^{\circ}$	0.63 ± 0.06^{b}	*
Helianthemum kahiricum	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	0.45 ± 0.06^{a}	*
Helianthemum seliimit	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	$0.13\pm0.06^{\rm a}$	*
Haloxylon scoparium	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	0.12 ± 0.04^{b}	0.28 ± 0.09^{a}	*
Helianthemum ellipticum	$0.00\pm0.00^{\mathrm{b}}$	$0.28\pm0.04^{\rm a}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	*
Helianthemum fontanesi	$0.02 \pm 0.01^{\circ}$	$0.00 \pm 0.00^{\circ}$	0.48 ± 0.01^{a}	$0.13\pm0.02^{\text{b}}$	*
Helianthemum intricatum	$0.85\pm0.07^{\rm a}$	$0.50\pm0.30^{\rm a}$	0.78 ± 0.21^{a}	0.32 ± 0.24^a	**
Helianthemum sessi	0.01 ± 0.00^{a}	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\rm b}$	*
Hernaria fontanesi	0.02 ± 0.01^{a}	$0.00\pm0.00^{\rm a}$	$0.48\pm0.44^{\rm a}$	$0.13\pm0.07^{\rm a}$	**
Launaea residifolia	$0.65\pm0.07^{\rm a}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	*
Lygeum spartum	$0.92\pm0.06^{\text{b}}$	1.03 ± 0.06^{b}	$0.07\pm0.03^{\rm c}$	1.23 ± 0.02^a	*
Plantago albicans	$0.07\pm0.02^{\rm a}$	$0.00\pm0.00^{\rm b}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	*
Reaunuria vermiculata	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	0.42 ± 0.06^{a}	$0.00\pm0.00^{\mathrm{b}}$	*
Stipa tenassicima	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\mathrm{b}}$	0.27 ± 0.06^{a}	*
Stipa plumosa	$0.00 \pm 0.00^{\rm b}$	$0.00 \pm 0.00^{\rm b}$	0.03 ± 0.02^{a}	$0.00 \pm 0.00^{\mathrm{b}}$	*
Thymus capitatus	$0.00\pm0.00^{\mathrm{b}}$	0.2 ± 0.14^{a}	$0.00\pm0.00^{\rm b}$	$0.00\pm0.00^{\rm b}$	*
Zygophyllum album L.	0.08 ± 0.02^{b}	0.55 ± 0.02^{a}	$0.07 \pm 0.06^{\circ}$	$0.00 \pm 0.00^{\mathrm{b}}$	*
Total	4.04	5.18	4.15	6.13	

Data represent means of twelve measures at the limit 95% of confidence,

*p < 0.05

Table 3: Annual species density (mean \pm SD) in the sites; site 1 (S1), site 2 (S2), site 3 (S3) and control site (SC).

Species					
	1	2	3	SC	<i>p</i> -value
Asteriscus pygmaeus	$0.00\pm0.00^{\rm c}$	$0.00\pm0.00^{\rm c}$	2.33 ± 0.23^{b}	4.33 ± 0.32^a	*
Astragalus tenuifolius	$0.00\pm0.00^{\mathrm{b}}$	1.00 ± 0.21^{a}	$0.83\pm0.15^{\rm a}$	$0.00\pm0.00^{\mathrm{b}}$	*
Atractylis flava	$0.00\pm0.00^{\rm c}$	$0.00 \pm 0.00^{\circ}$	$2.33\pm0.10^{\rm a}$	0.67 ± 0.30^{b}	*
Bromus madritensis	$0.00\pm0.00^{\mathrm{b}}$	0.50 ± 0.21^a	$0.00\pm0.00^{ m b}$	$0.00\pm0.00^{\mathrm{b}}$	*
Diplotaxis harra	$0.17\pm0.05^{\rm c}$	1.17 ± 0.12^{b}	$3.33\pm0.08^{\rm a}$	1.50 ± 0.31^{b}	*
Euphorbia retusa	$0.00\pm0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00\pm0.00^{ m b}$	$1.50\pm0.18^{\rm a}$	*
Ericaria pinnata	$0.00\pm0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00\pm0.00^{ m b}$	1.83 ± 0.14^{a}	*
Fagonia glutinosa	$0.00\pm0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00\pm0.00^{ m b}$	0.67 ± 0.26^{a}	*
Hippocrepis bicontortalois	$0.17\pm0.10^{\rm c}$	1.00 ± 0.20^{b}	$2.67\pm0.30^{\rm a}$	$0.00\pm0.00^{\rm c}$	*
Koelpimia linearis	$1.17\pm0.41^{\rm a}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	*
Kolerea pubescens	$0.00\pm0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	$1.50\pm0.19^{\rm a}$	$0.00\pm0.00^{\mathrm{b}}$	*
Launaea angustifolia	$2.33\pm0.10^{\rm a}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00\pm0.00^{ m b}$	$0.00\pm0.00^{\mathrm{b}}$	*
Launaea quercifolia	2.83 ± 0.17^{b}	4.66 ± 0.38^a	2.50 ± 0.84^{b}	$0.83 \pm 0.16^{\circ}$	*
Lotus halophilus	$0.00\pm0.00^{\rm c}$	$1.33\pm0.18^{\rm a}$	1.00 ± 0.02^{b}	$0.00\pm0.00^{\rm c}$	*
Medicago minima	$0.17\pm0.01^{\rm a}$	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{ m b}$	$0.00\pm0.00^{\mathrm{b}}$	*
Paronychia arabica	$0.00\pm0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	0.83 ± 0.10^{a}	*
Plantago coronopus	$0.00\pm0.00^{\mathrm{b}}$	$0.00 \pm 0.00^{\mathrm{b}}$	$0.00\pm0.00^{ m b}$	$0.50\pm0.03^{\rm a}$	*
Plantago ovata	$0.33 \pm 0.11^{\circ}$	$0.83\pm0.03^{\rm b}$	2.33 ± 0.09^{a}	0.00 ± 0.00^{d}	*
Schismus barbatus	1.00 ± 0.03^{b}	$0.83 \pm 0.04^{\circ}$	$0.00 \pm 0.00^{ m d}$	$4.50\pm0.04^{\rm a}$	*
Total	8.17	11.32	18.82	17.10	

Data represent means of twelve repetitions measures at the limit 95% of confidence,

p < 0.05, the variance between sites is significant

Table 4: Change indices of α -diversity (H' and R) (±SD) in the sites S1, S2, S3 and SC.

Sites	H' (n = 12) Shannonand Wiener Index ± SD	Evenness (R) (n = 12) (equitability)±SD
1	2.31*±0.01	$0.68^* \pm 0.04$
2	2.91*±0.01	$0.55^* \pm 0.03$
3	2.49*±0.02	$0.43^* \pm 0.02$
Control	2.99*±0.05	$0.46^{*} \pm 0.01$

Data represent means of α -diversity index in the four sites at the limit 95% of confidence, * = p < 0.05.

Table 5: Variation of Jaccard Index (β diversity) of similarity between sites.

Jaccard Index (\u03b3 diversity)(n = 12) **		Sites					
	1	2	3	Control			
1	1						
2	0.12	1					
3	0.11	0.13	1				
Control	0.15	0.07	0.09	1			

Data represent means of β -diversity index in the four sites at the limit 95% of confidence, ** = p > 0.05.

Table 6: Variance, , being a given variable under analysis, and the relative percentage ascribable to the intrasite and inter-site contributes.

Δ	$V(\Delta)$	intra-site contribution (%)	inter-site contribution (%)
рН	0.21	0. 61	99.39
EC	37,888	0.05	99.95
OM	101	1.07	98.03
CaCO ₃ t	99	0.06	99.94
CaCO3a	84	0.60	99.40
Cr	54	0.20	99.80
Со	0.68	0.60	99.40
Zn	18	0.33	99.67
Pb	1128	0.01	99.99
Species Richness	25	3.71	96.29
Perennial Species Richness	59	1.94	98.06
Annual Species Richness	0.07	3.09	96.81
Alpha Diversity	0.01	3.23	96.77
Evenness	578	0.08	99.02
Vegetation Cover	153	0.68	99.28

Table 7: Loading factors for the first two principal component of the soil properties and the ecological indicators.

Original Variable	PC ^S ₁	PC ^S ₂	Original Variable	PC_1^I	PC ^I ₂
рН	0.32	0.26	Species Richness	0.44	-0.08
EC	0.28	0.63	Perennial Species Richness	0.43	0.21
OM	-0.34	-0.17	Annual Species Richness	0.42	-0.13
CaCO ₃ t	0.35	-0.04	Alpha Diversity	0.33	0.78
CaCO3a	0.34	0.25	Evenness	-0.37	0.56
Cr	0.33	-0.37	Vegetation Cover	0.45	-0.12
Со	0.32	-0.43			
Zn	0.35	-0.06			
Pb	0.32	-0.33			

Source: https://www.sciencedirect.com/science/article/pii/S1470160X21001734#t0005

Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil (2021)

Table 1: Impacts of HMs on plants and humans.

HMs	Effects of plants and humans	Reference
Copper	1.Prevents the development of plants	(Yruela, 2005)(Wuana and
	2. Lower biomass in plants	Okieimen, 2011)
	3.Displays chlorotic effect in plants	
	4. Kidney and brain damage to humans	
	5. Intestinal and stomach pain	
Mercury	1. Disrupts the activity of mitochondria and causes	(Gulati et al., 2010, Messer et
	oxidative stress	al., 2005)
	2.Immune mediated disorders, loss of hairs, visual	
	disorder, failure of lung and kidney	
Lead	1.Reduces the amount of seed germination	(Ghani, 2010)
	2. Interrupts nutrition of minerals	
	3.Reduces division of cell	
	4.Memory loss for short time	
	5.Coordination and learning difficulties	
Nickel	1. Growth and development inhibited	(Chen et al., 2009)
	2.Induced leaf chlorosis	
	3.Disorder of allergic skin like scratching	
	4.Neurotoxic, immunotoxic effects	
	5.Loss of hairs	
Chromium	1.Decreases the proportion of growth of plants and buds	(Salem et al., 2000, Shanker et
	2.Reduces growth of roots, shoots and leaves	al., 2005)
	3.Nose infections, nasal congestion, issues with breathing	
	4.Fall of hairs	
Cobalt	1.Reduces biomass and growth of shoot	(Nagajyoti et al., 2010)
	2.Limits chlorophyll, and protein concentration	
Arsenic	1.Impacts of primary mechanisms in cells	(Tripathi et al., 2007)
Barium	1.Caused cardiac arrhythmias	(Jacobs et al., 2002)
	2.Gastrointestinal disorder	
	3. Cause adverse effects on the respiratory system	

Table 2: Group of radiotoxicities from radionuclides of a very high level of radiotoxicity to a low and minimal level.

Radionuclides	Radiotoxicity Group
²¹⁰ Po, ²¹⁰ Pb, ²³⁰ Th, ²³² Th, ²²⁶ Ra, ²³² U, ²³⁸ Pu, ²³⁷ Np,	Group A (The level of radiotoxicity of
²⁴¹ Am and others.	radionuclides is particularly high)
¹⁰⁶ Ru, ²²⁴ Ra, ²³⁵ U, ²³⁸ U, ²³⁴ U, ¹⁵² Eu, ¹⁴⁴ Ce, ²¹⁰ Bi, ⁹⁰ Sr,	Group B (High-radiotoxicity radionuclides)
²³⁰ Th, ²⁴¹ Pu, ¹³⁰ I, ¹³¹ I, and others	
³² P, ²² Na, ³⁶ Cl, ³⁵ S, ⁶⁰ Co, ⁵⁹ Fe, ⁸⁹ Sr, ⁹³ Mo, ⁹⁰ Y, ¹⁴⁰ Ba,	Group C (Average radio-toxicity radionuclides)
¹²⁵ Sn, ²³⁴ Th and others	
¹⁴ C, ⁴⁰ K, ⁷ Be, ⁵¹ Cr, ¹⁸ F, ⁶⁴ Cu, ⁵⁵ Fe, ¹²⁹ Te, ¹⁹⁷ Pt, ¹³¹ Cs,	Group D (Low- and minimal radiotoxicity
¹⁹⁷ Hg, ²¹⁰ Pb, ²⁰⁰ Tl, and others.	radionuclides)

Table 3: Mechanisms of tolerance to HMs ions in active microbes.

Heavy metals ions	Microorganisms Mechanism of resistance		Resistance molecular	Reference
Zinc (II), Copper (II), Cadmium (II)	Desulfovibrio desulfuricans	Extracellular sequestration	Extracellular polymeric elements	(Yue et al., 2015)
Chromium (II), Cadmium (II), Nickel (II)	D. desulfuricans	Extracellular sequestration	Hydrogen sulfide	(Joo et al., 2015)
Copper (II)	Sulfolobus solfataricus	Intracellular sequestration	Polyphosphates	(Remonsellez et al., 2006)
Zinc (II), Cadmium (II)	Synechococcus sp.	Intracellular sequestration	Metallothionein	(Blindauer et al., 2008)
Copper (II)	S. solfataricus	Active export	P-type efflux ATPase	(Soto et al., 2019)
Mercury (II)	Pseudomonas sp.	Enzymatic detoxification	Mercuric reductase	(Giovanella et al., 2016)

Table 4: Difference between in-situ bioremediation and ex situ bioremediation.

In situ bioremediation	Ex situ bioremediation
It enables processing of hazardous, contaminated,	It includes the disposal of toxic products or waste
and waste products at the location of the genesis.	material from the site, accompanied by transport and
	treatment to another place.
In in-situ bioremediation techniques includes:	In ex situ bioremediation techniques includes
phytoremediation, bioventing, biosparging,	:biopiles, landfarming, bioreactors, etc.
bioaugmentation, etc.	
For in-situ bioremediation, the treatment of	While this decontamination approach involves soil
polluted soil in the site were found to be quite	removal before treatment, it can be quicker, possible
efficient. There is no need to uncover the polluted	to manage, and generally allows the treatment of a
soil, results in less expensive.	wider range of soils and pollutants.
The disadvantage of in situ bioremediation is, it is	The disadvantage of ex situ bioremediation is the
less manageable, it can take longer time to	expenses of packaging, transportation, and
decontaminate.	management.

Table 5: Some plant species for bioremediation of heavy metals.

Plant species	Metals	Reference
Polygonum hydropiperoides	Cu, Pb	(Kamal et al., 2004)
Hydrocotyle umbellata	Pb, Zn, Cu, Cd, As	(Sharma and Agrawal, 2005)
Juncus effusus	Cd, Zn, Ni, Al, Co, Cr, Pb, Cu	(Archer and Caldwell, 2004)
Carex buchananii	Cd, Zn, Ni	(Ladislas et al., 2014)
Kyllinga brevifolia	U, Th, Sr, Ba, Ni, Pb	(Li et al., 2011)
Gratiola bogotensis	Pb, Zn, Cu, Cd, As	(Del Río et al., 2002)
Elsholtzia splendens	Cu	(Chen et al., 2005)
Salix viminalis, Salix fragilis	Zn, Cd, Cu, P	(Meers et al., 2007)

Table 6: HMs elimination with the help of microorganisms

Heavy metals	Selected microorganisms	References
Lead, Cadmium	Saccharomyces cerevisiae	(Farhan and Khadom, 2015, Lívia de and Benedito, 2015)
Chromium (VI)	Bacillus subtilis	(Balamurugan et al., 2014)
Chromium (VI)	Pseudomonas putida	(Balamurugan et al., 2014)
Cadmium, Zinc, Copper	Pseudomonas veronii	(Coelho et al., 2015)
Chromium (VI)	Bacillus cereus strain XMCr-6	(Dong et al., 2013)
Chromium, Lead, Zinc	Bacillus licheniformis, Escherichia coli	(Basha and Rajaganesh, 2014)
Copper, Chromium, Iron	B. licheniformis	(Samarth et al., 2012)
Nickel, Copper	Aspergillus versicolor	(Coelho et al., 2015)
Chromium (VI)	Rhizopus oryzae	(Sukumar, 2010)(Mittal et al., 2010)
Copper, Manganese, Zinc	Aspergillus brasiliensis, Penicillium cirtinum	(Pereira et al., 2014)
Lead, Nickel, Chromium	Aspergillus niger, Aspergillus flavus	(Dwivedi, 2012)
Lead (II), Copper (II)	Spirogyra sp., Cladophora sp.	(Coelho et al., 2015; Lee and Chang, 2011)
Chromium, Copper, Manganese, Zinc	Spirogyra sp, Spirulina sp.	(Coelho et al., 2015)
Cadmium, Lead	Chlorella vulgaris	(Aung et al., 2012)
Copper, Zinc	Spirulina maxima	(Chan et al., 2014)
Lead, Cadmium	Saccharomyces cerevisiae	(Farhan and Khadom, 2015, Lívia de and Benedito, 2015)
Copper	Candida utilis	(Zu et al., 2006)

Table 7: Microbial remediation mechanism of radionuclides.

Microbes involved	Heavy metal/ Radionuclide	Mechanism	Reference		
Klebsiella planticola, Salmonella enterica, Citrobacter sp, Pseudomonas aeruginosa, E. coli	Phosphates, Chromium and Arsenic sulphides	Biomineralization	(Francis and Dodge, 2009, Prakash et al., 2013)		
Thiobacillus ferrooxidans, Streptomyces sp., Pseudomonas putida	Mercury (II)	Detoxification	(Ozdemir et al., 2017, Yin et al., 2017)		
Rhizopus arrhizus, Pseudomonas mendocina, Arthrobacter sp., Bacillus subtilis	Cadmium (II), Zinc (II), Lead (II), Uranium (IV), Thorium	Bioaccumulation, Biotransformation, Biosorption	(Ozdemir et al., 2017, Yin et al., 2017)		
E. coli, Deinococcus radiodurans R1	Mercury (II), Uranyl nitrate	Genetically modified organisms	(Alexandrova et al., 2011, Prakash et al., 2013, Priya et al., 2014)		
Deinococcus. radiodurans	Uranyl phosphate	Bioprecipitation	(Suzuki and Banfield, 2004)		
Arthrobacter ilicis, Geobacter sp.	Uranium (VI), Plutonium (IV), Technetium (VII)	Bioaugmentation, Biostimulation	(Francis and Dodge, 2009, Merroun and Selenska-Pobell, 2008, Prakash et al., 2013)		

Table 8: Genes encoding metal transporters for improved HMs phytoextraction and phytostabilization.

Gene	Organisms	Metal transformation	Effect	Reference
AtATM3	Brassica juncea / Arabidopsis thaliana	ABC (ATP-binding cassette	Enhanced Cd and Pb aggregation in the shoots	(Bhuiyan et al., 2011)
YCF1	Saccharomyces cerevisiae	ABC	Enhanced Zn and Cd aggregation in the shoots	(Shim et al., 2013)
PgIREG1	Arabidopsis thaliana, Psychotria gabriellae	Ferroprotein/Regulator iron (FNP/IREG)	Enhanced Ni aggregation in the shoots	(Merlot et al., 2014)
OsMTP1	Nicotiana tabacum/Oryza sativa	Metal tolerance protein (MTP)	Enhanced Cd aggregation in the shoots	(Das et al., 2016)
copC	Pseudomonas sp.	Copper resistance protein (Cop)	Cu hyperaccumulation in the shoots	(Rodríguez- Llorente et al., 2012)
AtHMA4	Nicotiana tabacum	CDF, P-1b-ATPase	From the roots to the shoots constricted transfer of Cd	(Siemianowski et al., 2014)
AtMTP1, AtZIP1	Manihot esculenta	ZIP	Aggregation of Zn at the roots, with limited transportation to the shoots	(Gaitán-Solís et al., 2015)

Table 9: Low-cost adsorbents material for HMs removal.

Adsorbents		Adsor	ption Capacity	Reference	
	Ni ²⁺	Ni ²⁺ Zn ²⁺ Pb ²⁺ Cu ²⁺			
Clay/poly(methoxyethyl)acrylamide	80.9	20.6	81.02	29.8	(Solener et al., 2008)
Zeolite, clinoptilolite	0.4	0.5	1.6	1.64	(Babel and Kurniawan, 2003)
HCl-treated clay	—	63.2	83.3	-	(Vengris et al., 2001)
Activated phosphate	—	—	4	-	(Pan et al., 2007)
Modified zeolite, MMZ	-	_	123	-	(Nah et al., 2006)

Source: https://www.sciencedirect.com/science/article/pii/S2590262821000095#t0005

Effects of heavy metals and organic matter fractions on the fungal communities in mangrove sediments from Techeng Isle, South China. (2021)

Samples	As	Со	Cr	Cu	Mn	Ni	Pb	V	Zn	ТОС	TN	TS
			-		μg/g					%	%	%
Ac1	5.2	1.2	17.7	18.9	112.2	4.5	52.8	24.6	10.6	1.6	0.12	0.19
Ac2	4.8	1.0	17.4	16.8	105.9	3.9	51.6	25.5	10.2	1.3	0.08	0.11
Ac3	4.0	1.6	16.5	18.2	117.3	3.6	56.4	27.6	11.6	1.4	0.12	0.12
Ac-AV	4.67	1.27	$17.20 \pm$	17.97±	111.80	$4.00 \pm$	$53.60 \pm$	$25.90 \pm$	$10.80 \pm$	1.43 ±	0.11	$0.14 \pm$
	± 0.6 1 ^a	± 0.3 1^{a}	0.62 ^c	1.07 ^b	$\pm 5.71^{\circ}$	0.46	2.50 ^c	1.54 ^c	0.72 [°]	0.15 ^a	$\frac{\pm 0.0}{2^{a}}$	0.04°
Am1	10.8	4.6	18.3	21.0	156.3	8.7	54	26.7	20.4	2.3	0.21	0.08
Am2	12.0	5.0	18.9	21.7	171.3	6.6	52.8	24.9	21.4	1.8	0.18	0.05
Am3	10.4	4.4	19.8	23.1	157.8	8.7	58.8	25.8	20.4	1.9	0.15	0.13
Am-AV	11.07	4.67	19.00±	$21.93\pm$	161.80	$8.00 \pm$	$55.20\pm$	$25.80\pm$	20.73 ±	2.00±	0.18	$0.09 \pm$
	± 0.8 3^{b}	$\pm 0.3 \\ 1^{c}$	0.75 ^d	1.07 ^c	$\pm 8.26^{d}$	1.21 [°]	3.17 ^c	0.90 ^c	0.58 ^d	0.26 ^{ab}	± 0.0 3^{ab}	0.04 ^{ab}
Bg1	9.6	3.0	12.3	18.9	71.4	4.5	37.2	18.6	13.4	2.9	0.24	0.11
Bg2	8.4	2.6	12.0	19.6	75.3	3.9	36.0	18.3	13.4	2.4	0.19	0.16
Bg3	10.0	3.2	12.3	17.5	65.4	3.6	39.6	20.1	14.0	2.8	0.27	0.14
Bg-AV	9.33	2.93	$12.20\pm$	$18.67\pm$	$70.70 \pm$	$4.00\pm$	$37.60 \pm$	$19.00\pm$	$13.60\pm$	$2.70\pm$	0.23	$0.14 \pm$
	$\begin{array}{c} \pm 0.8 \\ 3^{b} \end{array}$	$\begin{array}{c} \pm 0.3 \\ 1^{b} \end{array}$	0.17 ^b	1.07 ^b	4.99 ^b	0.46 ^b	1.83 ^b	0.96 ^b	0.35 [°]	0.26 ^b	$\begin{array}{c} \pm 0.0 \\ 4^{bc} \end{array}$	0.03 ^b
Rs1	4.0	1.0	5.4	4.9	40.2	0.9	9.6	8.1	4.2	3.1	0.26	0.03
Rs2	3.2	0.8	5.1	4.2	42.6	0.9	8.4	8.1	4.4	3.9	0.38	0.05
Rs3	1.2	0.6	5.4	5.6	41.1	1.2	10.8	8.7	4.6	3.5	0.37	0.03
Rs-AV	2.80	0.80	5.30±	$4.90 \pm$	$41.30\pm$	$1.00 \pm$	$9.60 \pm$	$8.30 \pm$	$4.40 \pm$	$3.50\pm$	0.34	$0.04 \pm$
	$\frac{\pm 1.4}{4^{a}}$	± 0.2 0^{a}	0.17 ^a	0.70 ^a	1.21 ^a	0.17 ^a	1.20 ^a	0.35 ^a	0.20 ^a	0.40 ^c	± 0.0 7 ^c	0.01 ^a

Table 1: Microbial remediation mechanism of radionuclides.

Different letters indicate significant differences between the four samples at same factor (P < 0.05). TOC, total organic carbon; TN, total nitrogen; TS, total sulphur

Table 2: comparisons of microbial sequences, the estimated OTUs richness, Shannon's indexes of the fungal ITS1 sequences (97% sequences similarity) detected in the mangrove sediments from four sites (Ac, Am, Bg and Rs) on Techeng Isle, Zhanjiang, China.

Samples	Sequences	Observed OTUs	Chao 1	Shanon
Ac1	16372	124	122	2.91
Ac2	20147	135	137	3.12
Ac3	17820	137	142	3.01
Am1	15210	166	168	3.35
Am2	21034	170	175	3.46
Am3	15336	150	146	3.30
Bg1	18357	243	237	4.21
Bg2	20891	221	220	4.01
Bg3	18997	238	235	4.15
Rs1	20048	258	259	4.61
Rs2	21921	279	284	4.81
Rs3	19854	276	279	4.77

Source: https://www.sciencedirect.com/science/article/pii/S0147651321006576#tb10005

Long-Term Effect of Heavy Metal–Polluted Wastewater Irrigation on Physiological and Ecological Parameters of *Salicornia Europaea L.* (2020)

Metals	Mean	Minimum	Maximum	St. dev.
$Zn (mg L^{-1})$	2.45	0.158	3.8	2
$Fe (mg L^{-1})$	3.60	0.61	5.4	3
$Cu (mg L^{-1})$	0.44	0.058	0.90	0.2
$Cd (mg L^{-1})$	0.096	0.028	0.17	0.05
$\mathbf{Pb}(\mathbf{mg}\mathbf{L}^{-1})$	2.54	0.174	3.82	1
Ni (mg L^{-1})	2.77	0.074	4.62	2

Table 1: Mean, minimum, and maximum values and standard deviation of heavy metal concentrations in sewage (n = 4)

Table 2: Growth parameters of *Salicornia europaea* as affected by time and duration of wastewater application

Irrigation	Duration	Time (days)	Nodes on the main stem	Number of pairs of side branches	Diameter of the branched area (cm)
Control	Short term	2	$1.75 \pm 0.50b$	$1.00 \pm 0.00d$	7.87 ± 2.57b
		4	$1.75 \pm 0.50b$	$1.50 \pm 0.57 d$	9.20 ± 2.54b
	Average term	2	$4.25 \pm 0.95a$	3.00 ± 1.41 bc	19.42 ± 6.31a
		4	$5.25 \pm 0.95a$	4.50 ± 1.29a	21.17 ± 6.51a
	Long term	2	$4.75 \pm 1.50a$	3.50 ± 1.29ab	20.62 ± 3.08a
		4	$5.50 \pm 0.57a$	4.00 ± 1.15ab	21.30 ± 3.58a
Wastewater	Short term	2	$2.00 \pm 0.00b$	$1.00 \pm 0.00d$	$8.90 \pm 2.47b$
		4	$2.50 \pm 0.57b$	$1.75 \pm 0.50 \text{ cd}$	$10.10 \pm 2.32b$
	Average term	2	$4.50 \pm 1.29a$	4.25 ± 0.95 ab	20.50 ± 6.26a
		4	4.75 ± 1.25a	4.25 ± 1.50ab	23.10 ± 5.77a
	Long term	2	4.75 ± 1.50a	3.75 ± 1.50ab	20.70 ± 3.69a
		4	$4.25 \pm 2.06a$	3.75 ± 1.50ab	22.60 ± 5.98a
ANOVA	Irrigation (I)		ns	ns	*
	Duration (D)		**	**	**
	Time (T)		ns	*	**
	I×D		ns	ns	ns
	I×T		ns	ns	ns
	D×T		ns	ns	ns
	D×T×I		ns	ns	ns

^{ns,*,**} show non-significant and significant differences at 0.05, 0.01 probability level, respectively. Short term, 20 days after sowing (at vegetative stage); average, 30 days after sowing (at flowering stage); long term, 40 days after sowing (at reproductive stage)

Table 3: Root and shoot length and plant biomass (dry weight) of *Salicornia europaea* as affected by time and duration of wastewater application

Irriga tion	Duration	Time (days)	Shoot length (cm)	Root length	Shoot weight	Root weight	Plant biomass
				(cm)	(mg)	(mg)	(mg)
Contr ol	Short term	2	$7.6 \pm 1.06 f$	3.80 ± 1.06e	$270 \pm 60e$	$14 \pm 3.0d$	$284 \pm \mathbf{60.7e}$
		4	9.0 ± 1.29ef	4.70 ± 1.06de	380 ± 85de	$53 \pm 75 ab$	433 ± 154.1d
	Average term	2	$23.9\pm3.24d$	12.30 ± 1.16c	$590 \pm 69c$	41 ± 6.6a-d	631 ± 99.7c
		4	25.1 ± 3.70 cd	13.10 ± 1.52bc	600 ± 95 bc	47 ± 6.9abc	647 ± 93.77bc
	Long term	2	$24.3 \pm 2.93d$	14.40 ± 1.21ab	$\begin{array}{c} 0 \pm \\ ab \end{array} \qquad 750 \pm 54a \qquad 54 \pm 6.3ab \\ \hline \end{array}$		804 ± 40.2a
		4	25.4 ± 4.04 bcd	14.72 ± 0.68a	710 ± 120ab	52 ± 10.0ab	762 ± 123.46ab
Waste water	Short term	2	$10.4 \pm 2.68 \text{ef}$	4.42 ± 0.75de	350 ± 69de	$17 \pm 0.81 \text{ cd}$	367 ± 68.9de
		4	$11.7 \pm 2.34e$	$5.30 \pm 1.29d$	$460 \pm 47d$	23 ± 3.1 bcd	$483 \pm 47.5d$
	Average term	2	27.9 ± 2.68abc	12.62 ± 1.83c	670 ± 86abc	46 ± 7.5abc	716 ± 93.2abc
		4	28.5 ± 2.89ab	13.47 ± 2.05abc	690 ± 95 bc	54 ± 2.1ab	744 ± 132abc
	Long term	2	27.5 ± 2.67bc	13.37 ± 1.89abc	740 ± 41a	57 ± 9.8a	797 ± 51.91ab
		4	29.5 ± 2.85a	13.47 ± 2.03abc	$780 \pm 40a$	56 ± 10.0a	836 ± 29.72a
	Irrigation (I)		**	ns	**	ns	**
	Duration (D)		**	**	**	**	**
ANO VA	Time (T)		**	**	*	ns	*
	I × D		ns	**	*	ns	*
	I×T		ns	ns	ns	ns	ns
	$D \times T$		ns	ns	*	ns	*
	D×T×I		ns	ns	ns	ns	ns

^{ns} and ^{*, **} show non-significant and significant differences at 0.05, 0.01 probability level, respectively Short term, 20 days after sowing (at vegetative stage); average, 30 days after sowing (at flowering stage); long term, 40 days after sowing (at reproductive stage)

Table 4: Chlorophyll content, carotenoid, total soluble protein and electrical conductivity of *Salicornia europaea* as affected by time and duration of wastewater application

Irrigat ion	Duratio n	Time (days)	Chlorophyl l a	Chlorophyl l b	Total Chlorophyll	Carotenoids	Total soluble protein	EC
		$(mg g^{-1} FW)$						$(\mu S m^{-1})$
Contr ol	Short term	2	$\begin{array}{c} 5.21 \pm 1.10 \\ cd \end{array}$	$2.24\pm0.17a$	7.45 ± 0.94 bc	0.155 ± 0.099de	25.92 ± 0.95f	167.75 ± 8.18de
		4	6.75 ± 1.87ab	1.97 ± 0.28abc	8.73 ± 1.75ab	0.176 ±0.056cde	26.76 ± 0.60ef	164.50 ± 5.44e
	Average term	2	6.94 ± 1.34ab	1.95 ± 0.14abc	8.90 ± 1.27a	0.246 ± 0.11bc	27.61 ± 1.28de	169.50 ± 2.88de
		4	7.72 ± 1.21a	1.80 ± 0.35bc	9.51 ± 1.00a	0.316 ± 0.058ab	$\begin{array}{c} 28.31 \pm 0.70 \\ \text{cd} \end{array}$	170.75 ± 2.21de
	Long term	2	5.02 ± 1.73de	2.14 ± 0.47ab	7.17 ± 1.69 cd	0.162 ± 0.056de	27.61 ± 0.69de	170.25 ± 3.77de
		4	$3.49 \pm 0.33e$	1.97 ± 0.41abc	5.47 ± 0.39e	0.148 ± 0.046e	28.10 ± 0.48cde	168.50 ± 4.50de
Waste water	Short term	2	6.70 ±1.17abc	2.06 ± 0.16abc	8.76 ± 1.07ab	0.218 ±0.050cde	27.75 ± 1.74de	165.50 ± 3.31e
		4	7.37 ± 1.99ab	1.98 ± 0.26abc	9.36 ± 1.73a	$\begin{array}{c} 0.233 \pm 0.078 \\ \text{cd} \end{array}$	28.10 ± 1.65cde	167.50 ± 2.08de
	Average term	2	8.19 ± 1.44a	1.89 ± 0.22abc	$10.08 \pm 1.24a$	0.383 ± 0.047a	29.30 ± 0.60bc	173.50 ± 5.06 cd
		4	8.29 ± 1.09a	$\begin{array}{c} 1.74 \pm 0.35 \\ \text{cd} \end{array}$	10.04 ± 1.06a	0.385 ± 0.041a	30.29 ± 1.18ab	179.75 ± 8.65bc
	Long term	2	5.72 ± 1.73bcd	$1.35 \pm 0.34d$	7.08 ± 1.41 cd	0.226 ±0.076cde	31.06 ± 0.87a	184.75 ± 3.40ab
		4	4.20 ± 1.95de	1.69 ± 0.15 cd	5.90 ± 1.44de	0.158 ± 0.046de	31.27 ± 0.72a	187.00 ± 2.94a
ANOV A	Irrigation (I)		*	**	*	**	**	**
	Duration (D)		**	**	**	**	**	**
	Time (T)		ns	ns	ns	ns	*	ns
	$I \times D$		ns	*	ns	ns	*	**
	I×T		ns	ns	ns	ns	ns	*
	$D \times T$		**	ns	**	*	ns	ns
	D×T×I		ns	ns	ns	ns	ns	ns

^{ns} and ^{*, **} show non-significant and significant differences at 0.05, 0.01 probability level, respectively Short term, 20 days after sowing (at vegetative stage); average, 30 days after sowing (at flowering stage); long term, 40 days after sowing (at reproductive stage)

Source: https://link.springer.com/article/10.1007/s42729-020-00299-7

Risk assessment of heavy metal toxicity by sensitive biomarker δ -aminolevulinic acid dehydratase (ALA-D) for onion plants cultivated in polluted areas in Kosovo (2020)

Table 1: Statistical data of Cd, Cr, Ni, Pb and Zn concentrations (mg kg⁻¹) in soil samples from some polluted locations of the Mitrovica region (Shupkovc and City of Mitrovica) and Obiliqi region (Kryshevc, Leshkoshiq, Plementin and Mazgit) and non-polluted localtion Kraishtë (Control).

				Pollu	ited regions			
		Mitrovic	a region		Obiliqi	region		Non-polluted region
El	ements	Shupkovc	Mitrovica	Kryshevc	Leshkoshiq	Plementin	Mazgit	Control
		<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10
Cd	Mean	11.83 ^A	6.09 ^B	ND	ND	ND	ND	ND
	Median	11.99	6.65					
	Range	10.96-	3.35-7.74					
		12.36						
	St. dev.	0.55	1.73	~				
Cr	Mean	79.58 ^A	57.19 ^B	42.37 ^C	34.54 ^D	40.17 ^{CD}	33.28 ^D	15.55 ^E
	Median	74.04	54.23	42.57	34.33	40.52	33.26	15.50
	Range	73.51-	47.85-	40.89-	33.68-35.69	38.65-41.22	32.26-	14.67-16.82
		93.22	72.60	44.25			34.25	
	St. dev.	8.68	9.75	1.32	0.81	1.04	0.74	0.68
Ni	Mean	170.54 ^в	181.44 ^A	57.88 ^D	33.96 ^F	68.68 ^C	49.05 ^E	10.12 ^G
	Median	165.74	179.55	57.55	33.93	68.36	49.88	10.03
	Range	162.66-	169.32-	48.65-	30.26-37.59	66.45-71.98	44.40-	8.72-11.49
		184.83	196.10	66.45			55.36	
	St. dev.	9.38	10.66	6.59	2.73	2.11	4.41	1.12
Pb	Mean	2516.54 ^A	2122.09 ^в	174.57 ^C	145.81 ^C	158.54 [°]	166.31 [°]	26.82 ^D
	Median	2491.69	2065.87	174.26	146.99	159.45	165.41	26.67
	Range	2489-2576	1953-	171.52-	138.52-	155.62-	155.85-	24.45-29.32
			2365	178.96	155.45	160.25	174.96	
	St. dev.	38.76	167.22	2.82	6.75	1.94	7.08	1.47
Zn	Mean	2284.92 ^A	1927.44 ^в	284.55 ^C	163.16 ^D	284.31 ^C	170.75 ^D	77.68 ^E
	Median	2279.63	1925.39	285.61	164.28	284.63	170.77	78.45
	Range	2156-2402	1870-	278.95-	154.56-	280.61-	167.32-	69.13-88.33
			1980	288.74	170.28	288.65	174.21	
	St. dev.	90.86	41.59	3.94	6.26	3.09	2.57	7.13

Note: Means in each row followed by same letters are not significantly different at P 0.05 by one-way ANOVA with Duncan's multiple range tests.

Table 2: Statistical data of Cd, Pb and Zn concentrations (mg kg⁻¹) in leaves of onion plants grown in soil samples from some polluted locations of Mitrovica region (Shupkovc and City of Mitrovica) and Obiliqi region (Kryshevc, Leshkoshiq, Plementin and Mazgit) and non-polluted localtion Kraishtë (Control).

				Pollute	d regions			
		Mitrovio	a region		Obiliqi r	egion		Non-polluted region
El	ements	Shupkovc	Mitrovica	Kryshevc	Leshkoshiq	Plementin	Mazgit	Control
		<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10	<i>n</i> = 10
Cd	Mean	2.02	1.03	ND	ND	ND	ND	ND
	Median	2.03	1.02					
	Range	1.85-2.21	0.98-1.12					
	St. dev.	0.13	0.05					
Pb	Mean	8.35 ^A	5.69 ^B	2.48 ^D	1.85 ^E	3.02 ^C	2.69^D	ND
	Median	8.58	5.65	2.49	1.85	3.01	2.71	
	Range	7.77-8.62	5.45-5.98	2.25-2.65	1.74-1.98	2.95-3.12	2.54-	
							2.87	
	St. dev.	0.36	0.21	0.15	0.09	0.06	0.12	
Zn	Mean	29.72^B	32.98 ^A	17.95 [°]	13.08 ^D	19.69 ^C	14.99 ^D	10.26 ^E
	Median	30.62	32.98	17.91	13.16	20.14	14.97	10.28
	Range	25.74-	32.95-	17.36-18.45	12.36-13.95	18.65-20.15	14.32-	9.46-11.02
		35.49	33.01				15.62	
	St. dev.	4.02	0.02	0.42	0.61	0.66	0.48	0.55

Note: Means in each row followed by same letters are not significantly different at P 0.05 by one-way ANOVA with Duncan's multiple range tests.

Table 3: Correlation between Pb, Cr, Ni, Zn or Cd in soil and leaves of onion plants and in activity of δ -aminolevulinic acid dehydratase (ALA-D), δ -aminolevulinic acid (ALA) and total chlorophyll contents.

		Pb	Cr	Ni	Zn	Cd	Pb	Cd	Zn	ALA-D	ALA
Heavy metals in soil	Cr	0.91 <u>**</u>									
-	Ni	0.95 <u>**</u>	0.85 <u>**</u>								
	Zn	0.99 <u>**</u>	0.91 <u>**</u>	0.9 6 <u>**</u>							
	Cd	0.95 <u>**</u>	0.89 <u>**</u>	0.8 8 <u>**</u>	0.95 <u>*</u>						
Heavy metals in plant	Pb	0.92 <u>**</u>	0.89 <u>**</u>	0.9 **	0.93 <u>*</u>	0.92 <u>**</u>					
	Cd	0.87 <u>**</u>	0.81 <u>**</u>	-0. 54	0.97 <u>*</u> <u>*</u>	0.89 **	0.97 <u>**</u>				
	Zn	0.80 <u>**</u>	0.70 <u>**</u>	0.9 0 <u>**</u>	0.83 <u>*</u> <u>*</u>	0.72 <u>**</u>	0.89 <u>**</u>	-0.39			
Biochemical parameters	ALA-D	-0.49 <u>*</u> <u>*</u>	-0.50 <u>**</u>	-0. 62 <u>*</u> *	-0.52 <u>**</u>	-0. 44 <u>*</u> *	-0.71 <u>*</u> <u>*</u>	-0.32	-0.8 3 <u>**</u>		
	ALA	0.65 <u>**</u>	0.65 <u>**</u>	0.7 2 <u>**</u>	0.67 <u>*</u> <u>*</u>	0.64 **	0.82 <u>**</u>	0.71 <u>*</u>	0.85 <u>**</u>	-0.86 <u>**</u>	
	Total chl.	-0.39 <u>*</u>	-0.35 <u>*</u>	-0. 45 <u>*</u> *	-0.40 <u>*</u>	-0. 36 <u>*</u>	-0.51 <u>*</u> <u>*</u>	-0.52	-0.5 5 <u>**</u>	0.54 <u>**</u>	-0.59 <u>**</u>

** Correlation is significant at the 0.01 level.

* Correlation is significant at the 0.05 level.

Table 4: Activity of δ -aminolevulinic acid dehydratase (ALA-D), δ -aminolevulinic acid (ALA) and total chlorophyll contents in leaves of onion plants grown in soil samples from some polluted locations of Mitrovica region (Shupkovc and City of Mitrovica) and Obiliqi region (Kryshevc, Leshkoshiq, Plementin and Mazgit) and non-polluted localtion Kraishtë (Control).

Locat	ALA-D (µmol PGB mg protein ⁻¹ h ⁻¹)		ALA (µmol mg ⁻ ¹ FM)		Total chlorophyll (mg g ⁻¹ FM)		
	Mean	St. dev.	Mean	St. dev.	Mean	St. dev.	
Mitrovica region	Shupkovc	38.82 ^C	7.71	237.82 ^A	15.61	0.79 ^C	0.01
	Mitrovica	41.72 ^C	1.68	221.35 ^B	2.11	0.80 ^C	0.01
Obliqi region	Kryshevc	45.63 ^C	3.55	209.73 ^B	10.41	0.87 ^{AB}	0.07
	Leshkoshiq	57.19 ^B	3.63	187.23 ^C	18.36	0.89^{AB}	0.07
	Plementin	45.75 ^C	4.75	196.28^C	5.14	0.83 ^C	0.16
	Mazgit	44.51 ^C	5.27	213.65 ^B	2.34	0.81^C	0.10
	Control	80.36 ^A	5.97	152.02 ^D	4.96	0.97 ^A	0.01

Note: Means in each column followed by same letters are not significantly different at P 0.05 by one-way ANOVA with Duncan's multiple range tests.

Source: https://www.tandfonline.com/doi/full/10.1080/03601234.2020.1721229

Deciphering metal toxicity responses of flax (*Linum usitatissimum L.*) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils (2020)

Table 1: Quantitative estimation of ACC-deaminase, EPS and IAA production under standard and stressed conditions.

Bacteria	Acc-deaminase (µ	ıM/mg protein/h)	Exopolysaccha	aride (mg/ml)	IAA production (µM/ml)		
l Strains	Without stress	With stress	Without stress	With stress	Without stress	With stress	
PM14	$0.493\pm0.097^{\circ}$	$1.829\pm0.089^{\scriptscriptstyle a}$	$0.5933\pm0.0^{\rm b}$	$2.953\pm0.04^{\rm a}$	$107\pm1.632^{\rm a}$	$91\pm0.816^{\circ}$	
PM11	$0.489\pm0.081^\circ$	$1.701\pm0.008^{\rm b}$	$0.58\pm0.024^{\rm b}$	$2.967\pm0.04^{\rm a}$	$96\pm1.632^{\text{b}}$	$79\pm1.632^{\rm d}$	

Table 2: Physio-chemical properties of soil.

Soil parameters	Soil 1 (non-contaminated)	Soil 2 (contaminated)
Soil EC (dsm ⁻¹)	0.005	0.015
Soil pH	6.35	7.60
Soil texture	Loamy	Sandy loam
Organic matter	0.74%	0.92
Nitrate-Nitrogen (ppm)	7.24	5.32
Available k (ppm)	109	63
Available p (ppm)	7	12
Cd (ppm) 0.005	0.681	11.739
Cr (ppm)	0.869	128.15
Mn (ppm)	0.569	125.25
Zn (ppm)	0.249	90.55
Cu (ppm)	0.075	5.78

Table 3. Differential effects of *B. xiamenensis* and *B. gibsonii* in heavy metals uptake from contaminated industrial soil.

Treatments	Zn	Mn	Cd	Cr	Cu	Ni	cPb
		L. usita	atissimum				
С	$12.4\pm0.01^{\circ}$	$11.7\pm0.23^{\circ}$	$6\pm0.15^{\circ}$	$16.7\pm0.28^{\circ}$	$16.1\pm0.1^{\circ}$	$20\pm0.41^{\circ}$	$56\pm0.02^{\rm b}$
T1	$38.17\pm0.57^{\scriptscriptstyle a}$	$33.9\pm0.47^{\rm a}$	$10.5\pm0.19^{ m b}$	$18.9\pm0.3^{\rm b}$	$23.1\pm0.4^{\scriptscriptstyle b}$	$53\pm0.19^{\scriptscriptstyle a}$	$86\pm0.06^{\scriptscriptstyle a}$
T2	$22.58\pm0.5^{\text{b}}$	$17\pm0.36^{\text{b}}$	$14.8\pm0.08^{\scriptscriptstyle a}$	$35.3\pm0.81^{\circ}$	$31.4\pm0.8^{\rm a}$	$48.8\pm0.3^{\rm b}$	$85\pm0.19^{\scriptscriptstyle a}$
	. . .	• D. C	\mathbf{D} 'I ''(\mathbf{z})				

C= Control, T1 = *B. xiamenensis* PM14 T2 = *B. gibsonii* (n = 3).

Source: https://www.sciencedirect.com/science/article/pii/S0981942820302084

Table 1: Evaluation of Biochemical methods.

Parameters	Method	Reference
Hematological Haemoglobin RBC count WBC count Packed Cell Volume (PCV) Mean Corpuscular Volume (MCV)	ABX pentra-120 Automated Haematology Analyzer	Raghuramulu et al., 2003
Mean Corpuscular Hemoglobin (MCH) Mean Corpuscular		
Hemoglobin Concentration (MCHC) Biochemical		
Glucose	Hexokinase method	Shaw and Wolfe, 1989
Total protein	Biuret method	Shaw and Wolfe, 1989
Albumin	BCG Dye binding method	Bush and Reed, 1987
Calcium	Arenazo III method	Weissmann et al., 1980
Inorganic phosphorus	Phosphomolydate method	Daly and Ertingshausen, 1972
Electrolytes (Sodium, Potassium, Chloride)	ISE method	Tietz, 1987
Serum cholesterol	CHOD PAP method	Allain et al., 1974
ALT (SGOT)	colorimetric method	Reitman and Frankel, 1957
AST (SGPT)	modified IFCC/UV kinetic method	Reitman and Frankel, 1957
Alkaline phosphatase	kinetic method	Reitman and Frankel, 1957
Blood urea nitrogen	Urease GLDH/UV kinetic method	Tietz, 1987
Creatinine	Jaffe/kinetic method	Raghuramulu et al., 2003
Urine analysis (urine volume, pH and sodium, potassium, chloride)	Flame photometer	Schachter et al., 1980
Histopathology (liver and kidney)	conventional method-	Raghuramulu et al., 2003
	Microscope	

Table 2: Hematological values of experimental rats on 90th day

Parameters	Referenc	Control	Group I	Group II	Group	Group	Group	<i>f</i> value
	e value	group			III	IV	V	
Haemoglobin	11–19	16.34 ±	16.10 ±	15.80 ±	15.40 ±	15.23 ±	15.2 ±	0.27 ^{NS}
(g/dl)		3.42	1.65	1.41	1.69	1.89	2.76	
RBC (×10 ⁶	5.4-8.5	8.76 ±	8.90 ±	7.59 ±	8.70 ±	7.88 ±	8.60 ±	1. 6 ^{NS}
cells/mm ³)	3.7–4.9	0.32	0.85	1.22	1.37	1.21	0.88	0.54 ^{NS}
		7.32 ±	6.90 ±	6.12 ±	6.10 ±	7.12 ±	7.30 ±	
		0.34	1.16	3.12	1.17	1.76	2.31	
PCV(%)	37.6–50.6	45.89 ±	45.43 ±	48.64 ±	45.81 ±	49.20 ±	43.20 ±	4.2* (p <
		0.12	3.09	2.05	2.87	2.99	3.35	0.05)
MCV (cumm)	57.3–66	62.70 ±	65.20 ±	62.00 ±	61.08 ±	60.14 ±	65.80 ±	9.1* (p <
		0.08	0.76	0.62	4.32	0.07	0.76	0.05)
MCH (pg)	11–15	17.54 ±	18.20 ±	17.82 ±	17.60 ±	17.98 ±	17.50 ±	0.47 ^{NS}
		0.99	0.73	0.39	1.23	1.33	0.98	
MCHC (%)	30-35	32.90 ±	33.70 ±	33.32 ±	32.50 ±	33.65 ±	31.20 ±	0.28 ^{NS}
		5.71	3.98	4.31	2.76	5.74	2.76	

NS-Not significant, *p < 0.05, Dunnett's Multiple Comparison Test, all values are expressed as mean ± SD for 6 albino rats in each group.

Table 3 Biochemical values of experimental rats on 90th day

Parameters	Standard Value	Control group	Group I	Group II	Group III	Group IV	Group V	fvalue
Glucose (mg/dl)	85–132	89.32 ± 5.08	83.51 ± 9.08	80.28 ± 13.69	83.43 ± 9.18	88 ± 12.39	90.15 ± 3.47	1.0 ^{NS}
Cholesterol (mg/dl)	46–92	51.60 ± 1.80	74.01 ± 3.77	62.00 ± 0.89	70.00 ± 4.33	63.00 ± 15.14	67.00 ± 2.10	8.0*
Blood urea nitrogen (mg/dl)	15–21	15.86 ± 1.56	16.10 ± 0.90	18.70 ± 2.63	19.25 ± 3.39	17.80 ± 2.76	16.60 ± 7.26	(P < 0.05) 0.88 ^{NS}
Total protein (g/dl)	6.3–8.7	7.20 ± 1.56	6.60 ± 0.93	6.90 ± 0.63	6.60 ± 1.54	6.50 ± 0.91	6.50 ± 1.01	0.35 ^{NS}
Albumin (g/dl)	3.3–4.9	4.38 ± 0.36	4.70 ± 1.0	4.38 ± 0.63	4.70 ± 0.52	4.30 ± 0.96	4.70 ± 1.19	0.31 ^{NS}
SGOT (AST) (U/L)	37–92	79.89 ± 0.26	90.12 ± 0.72	84 ± 2.34	89.78 ± 3.26	89.56 ± 0.76	90.12 ± 0.36	38*
SGPT (ALT) (U/L)	17–50	48.03 ± 5.60	51.75 ± 13.31	47.66 ± 11.07	48.36 ± 6.27	42.00 ± 7.84	47.00 ± 9.03	(p < 0.05) 0.70 ^{NS}
Sodium (mEq/L)	140–150	143 ± 2.47	138.0 ± 8.13	139.0 ± 7.70	144.0 ± 13.44	138.0 ± 6.15	141.0 ± 10.25	0.53 ^{NS}
Potassium (mEq/L)	5.2–7.8	6.39 ± 0.43	6.9 ± 0.75	5.6 ± 0.62	7.4 ± 1.19	6.7 ± 1.22	5.4 ± 0.91	4.41*
Calcium (mg/dl)	10.7– 13.7	10.92 ± 0.64	11.80 ± 2.18	11.9 ± 3.45	12.6 ± 4.25	11.8 ± 1.88	11.9 ± 1.17	(p < 0.05) 0.25 ™
Creatinine (mg/dl)	0.9–1.5	1.57 ± 0.146	1.49 ± 0.103	1.50 ± 0.10	1.37 ± 0.05	1.45 ± 0.23	1.78 ± 0.12	0.13 NS
Alkaline Phosphatase (U/L)	39-216	120.72 ± 2.98	132.06 ± 6.71	131.00 ± 6.00	116.16 ± 5.30	126.36 ± 22.65	115.95 ± 10.58	2.48 ^{NS}

Values are significantly different from the control group at *p < 0.05 Dunnett's Multiple Comparison Test, all values are expressed as mean \pm SD for 6 albino rats in each group.

Table 4: Mean weight of vital organs of experimental rats.

Organs	Control group	Group I	Group II	Group III	Group IV	Group V	fvalue
Liver	3.21 ± 0.07	3.18 ± 1.07	3.34 ± 3.03	3.48 ± 2.04	3.21 ± 1.89	3.27 ± 2.23	0.019 ^{NS}
Spleen	0.34 ± 2.83	0.28 ± 1.24	0.37 ± 8.07	0.34 ± 3.24	0.28 ± 4.13	0.26 ± 1.25	0.067 ^{NS}
Heart	0.4 ± 3.16	0.34 ± 1.18	0.37 ± 2.12	0.42 ± 1.06	0.44 ± 3.04	0.41 ± 4.06	0.011 ^{NS}
Kidney	1.46 ± 2.14	1.29 ± 1.03	1.24 ± 3.12	1.98 ± 1.26	1.92 ± 2.31	1.31 ± 1.98	0.15 ^{NS}
Brain	0.48 ± 1.91	0.63 ± 2.01	0.59 ± 3.03	0.32 ± 2.26	0.49 ± 4.42	0.45 ± 1.76	0.097 ^{NS}

NS-not significant, Dunnett's multiple comparison test, all values are expressed as mean \pm SD for 6 albino rats in each group.

Table 5: Urine electrolytes of experimental rats.

Parameter	Control Group	Group I	Group II	Group III	Group IV	Group V	fvalue
рН	7.87 ± 1.14	7.56 ± 2.23	7.54 ± 1.18	7.9 ± 2.45	8.1 ± 1.32	7.86 ± 2.12	0.084 ^{NS}
Na (mEq/l)	140.2 ± 1.23	138 ± 2.34	140 ± 2.78	136 ± 1.29	142 ± 3.29	140 ± 3.2	1.9 ^{NS}
K (mEq/l)	2.8 ± 2.42	2.5 ± 1.21	3.17 ± 1.78	3.02 ± 1.28	3.12 ± 1.67	2.98 ± 2.48	0.10 ^{NS}
Cl (mEq/l)	170 ± 1.34	168 ± 2.02	173 ± 1.98	180 ± 1.71	174 ± 1.05	176 ±2.56	32** (P < 0.01)

NS-not significant, Dunnett's multiple comparisons Test, all values are expressed as mean \pm SD, n = 6 in each group.

** p < 0.01 significance level.

Table 6: Heavy metals accumulation in vital organs of experimental rats.

	Conti	ol		Gr o			Grou p II		Group III		Group IV			Group V	
				u p I											
	As	Cd	Pb	As	Cd	Pb	As Cd	Pb	As Cd	Pb	As	Cd	Pb	As Cd	Pb
Kidn ey	0.00 0.02 4	28	0. 17	0. 21	0.012	0.0 6	0.79 0.04	0.6	0.72 0.031	0.8	0.78	0.04	0.07 9	0.98 0.012	0. 12
Live r	0.20 8	0.01	0. 43 7	0. 09	0.039	0.0 8	0.51 0.037	0.29	0.236 0.012	0.5 7	0.156	0.0 25	0.1 2	0.76 0.04	0. 08
Brai n	0.1 7	nd	0. 0 5 7	0. 2 8	0.002	0.1 0	0.49 1 nd	0.08	0.396 nd	0.2 7	0.011	nd	0.0 3	0.05 nd	nd

nd- not deducted.

Source: https://www.sciencedirect.com/science/article/pii/S1018364719317926

Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance (2020)

Property	Soil for pot experiment
рН	6.3
OM (g/kg)	35.6
CEC (cmol/kg)	11.2
Total N (g/kg)	2.5
Total P (g/kg)	0.9
Total K (g/kg)	22.2
Total Cd (mg/kg)	46
Total Pb (mg/kg ⁾	790
Total Zn (mg/kg)	4131
Total Cu (mg/kg)	29
OM:	organic matter; CEC: cation exchangeable capacity.

Table 1: Physico-chemical characteristics and heavy metal content of the studied soils.

Table 2: Effects of different treatments on photosynthetic parameters of Sedum alfredii Hance.

Treatment	Pn	Tr	WUE	
1 reatment	mmol/(m ² \$sec))	$(g/(m^2 hr))$	(g/kg)	
СК	$38.40\pm0.10~\text{b}$	$0.07\pm0.04~b$	619.84 ± 332.44 ab	
EDTA	39.23 ± 0.12 a	$0.04 \pm 0.02 \ bc$	1246.44 ± 622.61 a	
EDTA + D54	$38.80\pm0.17~b$	0.15 ± 0.01 a	255.18 ± 10.48 c	
EDTA + D41	37.83 ± 0.15 c	$0.07 \pm 0.01 \text{ c}$	582.17 ± 88.93 ab	

Mean values are presented as mean \pm SD (standard deviation). Different letters indicate significant differences between treatments (p < 0.05). Pn: net photosynthetic rate; Tr: transpiration rate; WUE: water use efficiency, WUE¹/₄ Pn/Tr.

Table 3: Effects of different treatments on cysteine, gluthatione and phytochelatin content of Sedum alfredii Hance.

Table 3 e Effects of different treatments on cysteine, gluthatione and phytochelatin content of Sedum alfredii Hance.									
Treament	Cys	GSH	PC2	PC3	PC4	PC5			
	(nmol/g)	(nmol/g)	(nmol/g)	(nmol/g)	(nmol/g)	(nmol/g)			
СК	0.000 ± 0.000 c	11.662 ± 1.401 b	0.626 ± 0.071 c	0.363 ± 0.097 c	0.050 ± 0.015 b	0.009 ± 0.001 b			
EDTA	0.142 ± 0.043 b	15.128 ±1.967 a	4.712 ± 1.050 b	2.085 ± 0.482 b	0.111 ±0.034 a	0.015 ±0.003 a			
EDTA + D54	0.380 ± 0.366 ab	15.063 ± 1.851 a	7.879 ±1.567 a	3.221 ±0.509 a	0.117 ± 0.054 ab	0.012 ±0.002 a			
EDTA+D416	0.549 ± 0.273 a	10.935 ± 0.722 b	5.732 ± 2.135 ab	2.894 ±0.082 a	0.154 ± 0.106 ab	0.013 ± 0.004 ab			

Mean values are presented as mean \pm SD (standard deviation). Different letters denote significant difference from the corresponding control and other treatments (p < 0.05).

Cys: cysteine; GSH: glutathione; PC: phytochelatins.

Source: https://www.sciencedirect.com/science/article/abs/pii/S1001074219316377

Effects of long-term fertilizer applications on peanut yield and quality and plant and soil heavy metal accumulation (2020)

Table 1: Changes in pH, organic matter (OM) content, and available nutrients (mean \pm SD) in soil after long-term fertilization.

Treatment	pН	ОМ	Ν	Р	K
		(mg• kg-1)	mg• kg-1	mg∙ kg ⁻¹	mg∙ kg ⁻¹
Initial soil	$3.90 \pm 0.12 \text{ c}$	8.44 ± 0.72 c	$0.043 \pm 0.0024 \text{ c}$	-	0.084 ± 0.013 b
F	$5.38\pm0.14~b$	$19.51\pm0.76~b$	$0.073 \pm 0.0032 \text{ b}$	$0.015 \pm 0.00078 \ b$	0.58 ± 0.054 a
FT	$5.25\pm0.20~b$	$20.52\pm0.60~b$	$0.078 \pm 0.0038 \text{ b}$	$0.016 \pm 0.00081 \text{ b}$	0.63 ± 0.062 a
М	6.03 ± 0.21 a	22.58 ± 0.84 a	0.090 ± 0.0022 a	0.062 ± 0.0018 a	0.60 ± 0.050 a
MB	5.76 ± 0.18 a	22.62 ± 0.69 a	0.090 ± 0.0026 a	0.059 ± 0.0025 a	0.57 ± 0.047 a
MBT	5.83 ± 0.11 a	23.05 ± 0.80 a	0.092 ± 0.0029 a	0.065 ± 0.0016 a	0.56 ± 0.052 a

Different lowercase letters within columns indicate significant differences (P < 0.05, Student–Newman–Keuls multiple comparison test). F: chemical fertilizer; FT: F + trace elements; M: organic fertilizer (pig manure); MB: M + effective microorganisms; MBT: MB + trace elements.

Table 2: Effects of fertilization on crude protein and crude lipid content (mean \pm SD) (%) in peanut kernels

Treatment	F	FT	М	MB	MBT
Crude protein	$28.78\pm0.12c$	$29.06\pm0.18c$	$32.71\pm0.21\text{b}$	$33.02\pm0.22b$	$34.76 \pm \mathbf{0.22a}$
Crude lipid	$52.81 \pm 0.11b$	$52.38 \pm 0.86b$	54.81 ± 1.19a	54.19 ± 0.52a	56.6 ± 0.42a

Different lowercase letters within columns indicate significant differences (P < 0.05, Student–Newman–Keuls multiple comparison test). F: chemical fertilizer; FT: F + trace elements; M: organic fertilizer (pig manure); MB: M + effective microorganisms; MBT: MB + trace elements.

Table 3: Effect of fertilization on amino acid contents (mean \pm SD) (%) in peanut kernels

Treatment	F	FT	М	MB	MBT
Threonine	$1.30 \pm 0.03 \text{ c}$	$1.36 \pm 0.04 \text{ c}$	$1.45\pm0.04~\text{b}$	$1.51\pm0.05~b$	1.84 ± 0.08 a
Valine	1.57 ± 0.03 c	1.63 ± 0.03 c	$1.76 \pm 0.04 \text{ b}$	$1.79 \pm 0.04 \text{ b}$	1.91 ± 0.05 a
Methionine	$0.10 \pm 0.02 \text{ c}$	$0.14 \pm 0.02 \text{ c}$	$0.38 \pm 0.03 \text{ b}$	$0.42 \pm 0.04 \text{ b}$	0.51 ± 0.04 a
Isoleucine	1.59 ± 0.02 c	1.59 ± 0.02 c	1.68 ± 0.03 b	1.71 ± 0.03 b	1.83 ± 0.04 a
Leucine	3.12 ± 0.02 c	3.17 ± 0.03 c	3.38 ± 0.03 b	3.43 ± 0.03 b	3.64 ± 0.05 a
Phenylalanine	2.92 ± 0.02 c	$2.97 \pm 0.2 \text{ c}$	3.17 ± 0.03 b	3.21 ± 0.03 b	3.36 ± 0.04 a
Lysine	2.66 ± 0.02 c	2.71 ± 0.03 c	2.83 ± 0.03 b	2.86 ± 0.03 b	3.21 ± 0.05 a
Total amino acids	$54.14 \pm 0.21 \text{ c}$	54.59 ± 0.23 c	55.73 ± 0.26 b	56.01 ± 0.28 b	58.55 ± 0.27 a

Different lowercase letters within columns indicate significant differences (P < 0.05, Student–Newman–Keuls multiple comparison test). F: chemical fertilizer; FT: F + trace elements; M: organic fertilizer (pig manure); MB: M + effective microorganisms; MBT: MB + trace elements.

Treatment	F	FT	Μ	MB	MBT
Palmitic acid	$8.40\pm0.12~b$	$8.43\pm0.13b$	8.73 ± 0.13 a	$8.78\pm0.14a$	8.77 ± 0.13 a
Stearic acid	$2.51\pm0.02~b$	$2.53\pm0.02b$	2.62 ± 0.03 a	$2.59\pm0.03a$	2.63 ± 0.03 a
Oleic acid	$48.32\pm0.13c$	$48.53 \pm 0.13c$	$50.52\pm0.16~b$	$50.93\pm0.1~b$	51.57 ± 0.17 a
Linoleic acid	$29.75\pm0.11b$	$29.76\pm0.12b$	30.13 ± 0.14 a	$30.15 \pm 0.16a$	30.15 ± 0.15 a
Linolenic acid	$0.33\pm0.01~b$	$0.35\pm0.02b$	0.44 ± 0.03 a	$0.47\pm0.03a$	$0.45 \pm 0.03 a$
Eicosanoic acid	$1.41\pm0.01~b$	$1.45\pm0.02b$	1.58 ± 0.03 a	$1.63\pm0.03a$	1.65 ± 0.03 a
Arachidonic acid	$0.79\pm0.02~b$	$0.81\pm0.02b$	0.86 ± 0.02 a	$0.87 \pm 0.03a$	$0.89 \pm 0.03 a$
Docosanoic acid	$2.12\pm0.02~b$	$2.15\pm0.02b$	2.25 ± 0.03 a	$2.31\pm0.03a$	2.25 ± 0.03 a
Tetracosanoic	$1.23\pm0.02~b$	$1.26\pm0.02b$	1.36 ± 0.03 a	$1.42\pm0.03a$	1.43 ± 0.03 a
acid					
O/ L ratio	1.62	1.63	1.67	1.68	1.71

Table 4: Effect of fertilization practice on fatty acid content and composition (mean \pm SD) (%)

Different lowercase letters within columns indicate significant differences (P < 0.05, Student–Newman–Keuls multiple comparison test). F: chemical fertilizer; FT: F + trace elements; M: organic fertilizer (pig manure); MB: M + effective microorganisms; MBT: MB + trace elements.

Table 5: Metal contents (mean \pm SD) in pig manure and inorganic fertilizers

Amendment	Cu	Zn	Pb	Cd
Pig manure (dry weight)	$mg \cdot kg^{-1}$ 20.57 ± 0.34	$mg \cdot kg^{-1}$ 81.57 ± 0.43	$mg \cdot kg^{-1}$ 27.64 ± 0.13	mg· kg ⁻¹ 7.91 ± 0.06
Urea	17.78 ± 0.14	70.83 ± 0.32	2.51 ± 0.02	$\boldsymbol{0.08 \pm 0.001}$
Calcium magnesium phosphate	1.02 ± 0.01	4.47 ± 0.02	-	0.12 ± 0.01
Potassium chloride	3.18 ± 0.03	14.17 ± 0.15	-	0.08 ± 0.001

Source: https://www.sciencedirect.com/science/article/abs/pii/S1002016017604570

Efficiency of Heavy Metals-Tolerant Plant Growth Promoting Bacteria for Alleviating Heavy Metals Toxicity on Sorghum (2019)

Treatments		Chlo.A Inoculation with HMT			Caroteno	ids	
	-	Without	With W	s Vithout W	ith With	out With	
Control		0.9 ^h	2.1 ^b	0.5 ^e	1.2 ^{bc}	1.3 ^f	3.1 ^{ab}
Cu ²⁺ (mg/kg)	100 200 400	1.9 ^b 1.4 ^d 1.3 ^{de}	0.7 ⁱ 2.1 ^b 1.9 ^c	1.1^{a} 0.7^{cd} 0.6^{de}	1.3 ^b 1.2 ^{bc} 0.5 ⁱ	3.1 ^{ab} 2.6 ^{bc} 2.1 ^{cde}	3.2 ^a 2.9 ^{cd} 2.6 ^e
Cd ²⁺ (mg/kg)	10 20 40	1.4 ^d 1.3 ^{de} 1.3 ^{de}	1.4 ^g 2.9 ^a 1.7 ^{de}	0.9 ^b 1.2 ^a 1.2 ^a	1.3 ^b 1.1 ^{cd} 0.6 ^{hi}	2.6 ^{bc} 2.2 ^{cd} 2.0 ^{de}	3.2 ^a 2.8 ^d 2.3 ^f
Pb ²⁺ (mg/kg)	200 400 800	2.2 ^a 1.7 ^c 1.1 ^{fg}	1.5 ^{gf} 1.2 ^h 1.4 ^g	1.2 ^a 0.8 ^{bc} 0.6 ^{de}	1.0 ^{de} 1.6 ^a 0.7 ^{gh}	3.4 ^a 2.6 ^{bc} 1.3 ^f	3.1 ^{ab} 2.9 ^{cd} 2.5 ^e
Zn ²⁺ (mg/kg)	250 500 1000	1.8 ^{bc} 1.2 ^{ef} 1.0 ^{gh}	1.8 ^{cd} 1.6 ^{ef} 1.1 ^h	1.2 ^a 0.7 ^{cd} 0.9 ^b	0.9 ^{ef} 0.8 ^{gf} 0.6 ^{hi}	3.2 ^a 1.8 ^{def} 1.6 ^{ef}	3.1 ^{ab} 2.1 ^f 1.9 ^g
Mixture (mg/kg)		1.3 ^{de}	2.2 ^b	0.5 ^e	0.9 ^{ef}	1.9 ^{de}	3.0 ^{bc}
a,b, c Moone with diffor	ant annorgan	nt in the come	oolumn oro si	mificantly dif	format at (D-0)	15)	

Table : Effect of heavy metals on photosynthetic pigments in sorghum leaves

cript in the same column are significantly

Data presented in Table indicates that photosynthetic pigments increased in inoculated plants than uninoculated ones. This due to the beneficial effects of HMT-PGPB for alleviation the toxic effects of heavy metals. In this respect, Popova et al. (2012) demonstrated the relationship between total chlorophyll content in heavy metal exposed and bacterial treated plants. He proved that because the ability of the bacteria to metabolize heavy metal, the chlorophyll content was affected and cause increase in photosynthetic activity followed by increase in plant growth.

Source: https://www.sciencedirect.com/science/article/abs/pii/S0098847219302497

Efficiency of Heavy Metals-Tolerant Plant Growth Promoting Bacteria for Alleviating Heavy Metals Toxicity on Sorghum (2019)

		РО		PPO	
Treatments	(Abs. at 425 1 Inoculation w	nm/g FW/15 min.) vith HMT-PGPB	(Abs. at 420 m	m/g FW/ 30 min.)	11/41
Control		4.048 ^a	4.550 ^a	1.034 ^g	1.293 ^h
Cu ²⁺ (mg/kg)	100 200 400	4.133 ^a 3.751 ^a 3.076 ^b	4.280 ^c 3.775 ^k 3.483 ^m	1.792 ^b 1.145 ^e 0.571 ^k	2.014 ^b 1.168 ^j 1.079 ^l
Cd ²⁺ (mg/kg)	10 20 40	4.113 ^a 3.978 ^a 3.693 ^a	$\begin{array}{c} 4.327^{b} \\ 4.252^{d} \\ 4.038^{e} \end{array}$	$\frac{1.910^{a}}{0.833^{i}}\\0.830^{i}$	1.912 ^c 0.977 ^m 0.933 ⁿ
Pb²⁺ (mg/kg)	200 400 800	$\begin{array}{c} 4.102^{a} \\ 3.979^{a} \\ 3.956^{a} \end{array}$	3.828 ⁱ 3.818 ^j 3.763 ¹	$\begin{array}{c} 0.910^{ m h} \\ 0.830^{ m i} \\ 0.806^{ m j} \end{array}$	$\frac{1.761^{d}}{1.531^{f}}\\1.173^{i}$
Zn ²⁺ (mg/kg)	250 500 1000	$\begin{array}{c} 4.154^{a} \\ 4.000^{a} \\ 3.948^{a} \end{array}$	3.998 ^f 3.954 ^h 3.245 ⁿ	1.473 ^c 1.315 ^d 1.317 ^d	1.566 ^e 1.492 ^g 1.081 ^k
Mixture (mg/kg)		3.859 ^a	3.987 ^g	1.091 ^f	2.583 ^a

Table: Effect of different heavy metals concentrations on oxidative enzymes in sorghum

a, b, c Means with different superscript in the same column are significantly different at (P<0.05).

PO: peroxidase, PPO: polyphenol oxidase

Respecting the effect of heavy metals mixture on sorghum growth, it was clear that all estimated parameters were lower in uninoculated plants than inoculated plants. This could be because the toxic effect of heavy metals and role of HMT-PGPB which possess many strategies (salicylic acid, proline, exopolysaccharide, biosurfactant and sidrophores) to alleviate the toxic effect of heavy metals as previously confirmed and as many researchers demonstrated.

Source: http://sci-hub.tw/https://doi.org/10.1016/j.envexpbot.2019.03.005

Heavy metal accumulation in rosemary leaves and stems exposed to traffic-related pollution near Adana-İskenderun Highway (*Hatay, Turkey*) (2019)

Accumulation level of heavy metals in the plants' leaves and stem (ppm)

Source: https://link.springer.com/content/pdf/10.1007%2Fs10661-019-7714-7.pdf

Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils (2019)

Table: Maximum permissible limits for toxic heavy metals concentration in irrigation water, soil and plants.

Metal	Irrigation water (μg/mL)	Soil (µg/g)	Plant (µg/g)
Lead (Pb)	0.015	300	0.30
Cadmium (Cd)	0.01	3	5
Chromium (Cr)	0.10	150	0.2
Arsenic (As)	0.01	20	0.1
Nickel (Ni)	1.40	50	67
Mercury (Hg)	0.01	30	0.03
Copper (Cu)	0.20	80	40
Iron (Fe)	0.50	50,000	450
Zinc (Zn)	2.0	300	60
Manganese (Mn)	0.20	140	500

Lead and cadmium can influence the absorption of Cu^{2+} , Fe^{2+} , Zn^{2+} and Mn^{2+} through competition for sites or processes shared by these cations (Xu and Shi, 2000). Hence, metal contaminated crops mainly vegetables are not safe for human edible purpose due to their network of roots in upper layer of soil (Smolen et al., 2010; Qureshi et al., 2016; Gupta et al., 2019). The maximum permissible limits of toxic heavy metals in irrigation water, soil and plants are presented in the table.

Source: https://www.sciencedirect.com/science/article/pii/S0147651319302271

Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations (2019)

Table: The comparison of measured and simulated cumulative metal uptake for all scenarios (t ¹/₄ 180 days; values ¹/₄ averaged data, $n \le 4$).

Samples	Measured	values	Simulated	values	RMSE(Zn)		RMSE(Pb)	RMSE(Cd)
	Zn	Pb	Cd	Zn	Pb	Cd		
Setaria viridis	85.86	75.74	8.05	87.2	75.21	7.77	1.61	4.16
Phragmites australisis	119.74	40.71	4.28	115.7	41.21	4.22	1.27	2.04
Echinochloa crus-galli	228.65	37.36	11.44	240.21	38.67	11.22	1.12	1.43

Table shows the growth characteristics of the 3 plant species (Setaria viridis, Echinochloa crus-galli and Phragmites australis) in this area.

Table compared the modeled solute plant uptake with those observed values in the surveyed area (t 180 days). Due to the complexity of predicting the rate of degradation and transportation of trace metal contaminants in the unsaturated zone, it was considered accept- able if root mean square error was less than 50%. The average values of RMSE between the predicted and observed Zn, Pb and Cd uptake is shown in Table, where the highest RMSE is 1.61(Zn), 4.16(Pb) and 6.01(Cd). Nevertheless, a maximum concentration croot for Pb uptake was modified to 0.21. This requirement was used due to (1) extremely low Pb translocation from the study area and (2) a relatively high initial Pb concentration.

Source: https://sci-hub.tw/10.1016/j.envpol.2019.113255

Assessment of Metalloid and Metal Contamination in Soils from Hainan, China.(2018)

	As	Cd ^a	Cr	Cu	Hg ^a	Ni	Pb	Se	Zn
Ν	8713	8713	8713	8713	8713	8713	8713	8713	8713
Minimum	0.01	2	0.1	0.25	1	0.1	1	0.02	2
Maximum	988.04	3064	860.3	192.9	3540	327.1	619.6	4.68	800
Geometrical mean	2.17	60.19	26.50	9.43	33.34	8.74	22.20	0.26	39.64
Variation coefficient	4.05	1.16	1.58	1.35	1.77	1.91	0.67	0.88	0.74
Std. Deviation	21.42	93.61	96.32	23.34	75.20	48.18	17.51	0.30	37.91
Skewness	24.91	10.52	2.65	2.35	29.30	2.74	7.79	3.39	2.51
Kurtosis	858.68	219.08	7.09	4.97	1127.52	6.93	191.20	22.67	22.31
China BK [⊅]	9.20	74.00	53.90	20.00	40.00	23.40	23.60	0.22	67.70
Threshold of the first grate ^c	15	200	90	35	150	40	35		100
Canadian soil quality guidelines ^d	12	10000	64	63	6600	45	140	1	200
Target value of Dutch soil guidelines ^e	29	800	100	36	300	35	85		140

Table: Statistics of studied elements (mg.kg⁻¹) in soils (0–20 cm) of Hainan Island

^a μg.kg⁻¹; ^bBackground values of Chinese soils, A layer (0–20 cm), more than 4000 samples; ^cClass I value of the Environmental Quality Standard for Soils in China; ^d Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (Residential); ^eValues for soil remediation proposed by Dutch Ministry of Housing, Spatial Planning and Environment.

Source: https://www.mdpi.com/1660-4601/15/3/454

Heavy Metals bio-adsorption by Hibiscus Sabdariffa l. from contaminated water.(2018)

Mean Cd content (mg/L)	Time of contact							
	1 min	5 min	10 min	15 min	30 min	40 min		
sepal + 1 % black tea residue								
0.2 % bio-adsorbent H. sabdariffa L.	48.04 ^a	42.338 ^b	33.217 °	32.574 °	32.111 °	26.788 ^d		
sepal + 2 % black tea residue								
0.3 % bio-adsorbent H. sabdariffa L.	47.03 ^a	38.195 ^b	32.067 °	28.974 °	26.571 °	17.454 ^d		
sepal + 3 % black tea residue								
0.5 % bio-adsorbent H. sabdariffa L.	44.12 ^a	34.187 ^b	30.107 ^c	27.651 ^c	14.092 ^d	8.732 ^d		
sepal + 3 % black tea residue								
untreated contaminated Effluent	50.032 ^a	50.021 ^a	49.868 ^a	49.866 ^a	49.964 ^a	49.866 ^a		
Mean Co content (mg/L)	1 min	5 min	10 min	15 min	30 min	40 min		
0.1 % bio-adsorbent H. sabdariffa L.	103.42 ^a	97.106 ^a	95.602 ^a	93.116 ^a	93.217 ^a	91.181 ^b		
sepal + 1 % black tea residue								
0.2 % bio-adsorbent H. sabdariffa L.	100.88 ^a	98.419 ^a	94.333 ^a	91.018 ^b	89.806 ^b	88.112 ^b		
sepal + 2 % black tea residue								
0.3 % bio-adsorbent H. sabdariffa L.	100.01 ^a	90.154 ^b	89.094 ^b	86.731 ^b	80.556 °	78.667 [°]		
sepal + 3 % black tea residue								
0.5 % bio-adsorbent H. sabdariffa L.	98.65 ^a	87.28 ^b	86.564 ^b	83.211 ^b	78.444 ^c	70.193 °		
sepal + 3 % black tea residue								
untreated contaminated Effluent	110.21 ^a	110.45 ^a	109.89 ^a	109.88 ^a	110.23 ^a	110.35 ^a		
Mean Ni content (mg/L)	1 min	5 min	10 min	15 min	30 min	40 min		
0.1 % bio-adsorbent H. sabdariffa L.	106.52 ^a	100.03 ^a	95.556 ^b	93.213 ^b	90.617 ^b	82.187 ^c		
sepal + 1 % black tea residue								
0.2 % bio-adsorbent H. sabdariffa L.	102.89 ^a	97.632 ^a	92.206 ^b	90.111 ^b	85.345 ^c	78.432 ^d		
sepal + 2 % black tea residue								
0.3 % bio-adsorbent H. sabdariffa L.	95.498 ^a	91.222 ^b	89.704 ^b	84.532 ^c	80.556 °	76.562 ^d		
sepal + 3 % black tea residue								
0.5 % bio-adsorbent H. sabdariffa L.	90.478 ^b	80.778 ^c	74.306 ^d	68.092 ^d	60.232 ^d	50.32 ^f		
sepal + 3 % black tea residue								
untreated contaminated Effluent	110.15 ^a	111.9 ^a	110.16 ^a	110.87 ^a	110.34 ^a	110.28 ^a		

Mean value \pm SD of Cadmium, Cobalt and Nickel contents (mg /L) after addition of different percentages of H. sabdariffa L. sepal and black tea residue

Source: http://repositsc.nuczu.edu.ua/bitstream/123456789/6848/1/22-32-Parisa%20Ziarati.pdf

Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. (2017)

Countr v	Poland	Pakistan	Spain	Algeria	Iran	India	UK	Nigeria
Metal	Concentra tion	Concentr ation in	Concentrati on in	Concentrati on in	Concentration in	Concentratio n	Concentration	Concentratio n
	In air(ng/ ^{m3})	air (ng/ ^{m3})	air (ng/ ^{m3})	air(ng/ ^{m3})	air(ng/ ^{m3})	in air (ng/ ^{m3})	in air (ng/ ^{m3})	in air(ng/ ^{m3})
Pb	23.6	16.24	9.24	299	120.92	-	10.22	0.832
Cd	0.806	31.66	0.25	21.2	0.33	0.02	0.2	-
Zn	66.5	0.85	354	-	164.58	7.13	-	1.712
Ni	2.15	65.78	3.38	42.4	5.33	0.29	1.74	0.478
As	0.534	-	0.55	-	7.77	-	0.91	-
Fe	-	-		639.8	652.41	20.81	-	1.081
Со	0.271	12.69		37.7	5.13		-	-
Al	0.058	3.01	-	-	241.51	13.89	-	-

Table 1: Heavy metal levels in air reported in different countries

Table 2: Foliar heavy metal uptake by vegetables and associated health risks near industrial areas

		Concentration in	Concentrat ion	Concentrati on	G EF	DIM (mg	HRI
Metal	Vegetabl	atmospheric	in plant				
	е	fallouts	shoot	in grains		kg/ day)	
		$(mg cm^{-2})$	(mg /kg)				
Cd	Spinach		317.3	-	396.6	0.127	25.493
Cd	Rice		30.1	2	0.1	0.012	2.418
Cd	Lettuce	0.9	1.7		1.9	0.001	0.137
Pb	Lettuce		335		300.1	0.135	26.915
Pb	Lettuce		171.5		248.7	0.069	13.779
Pb	Lettuce	456.2	122		0.3	0.049	9.802
Pb	Spinach		485	-	79.5	0.195	38.966
Zn	Lettuce	6.9	29.1		4.2	0.012	2.338
Zn	Wheat		31.68	43.61	1.4	0.013	2.545
Zn	Spinach		144.2	-	5.7	0.058	11.585
Zn	Wheat		86.8	43.4	0.5	0.035	6.974
Sb	Lettuce	1.9	1.4		0.7	0.001	0.112
Sb	Spinach		276.3	-	50.2	0.111	22.199
Ni	Birch	58.2	4.8		0.1	0.002	0.386
Cu	Ryegrass	1.7	7		4.1	0.003	0.562
As	Lettuce	0.2	1.1		5.5	0	0.088

GEF; Global Enrichment Factor, DIM; Daily Intake of Metals, HRI; Health Risk Index

Source: https://sci-hub.tw/10.1016/j.jhazmat.2016.11.063

Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia (2016)

Table 1: Daily intakes of metals (DIM) (mg kg⁻¹ person⁻¹ d⁻¹) and the Health Risk Index (HRI) for individual heavy metals in food crops irrigated with sewage water

Metals	Translocation factor AF ^a	Risk assessmer	nt index		RDA ^b (mg day ¹)	RfD ^c (mg kg ¹ day ¹)
		DIM	HRI	THQ		
Cu	0.0122-0.0246	3.30E-03	2.20E-03	0.873	6.0–9.0	0.2
Ni	0.1265–0.1489	3.20E-03	1.62E-01	0.902	2.0-8.0	0.4
Mn	1.0777–1.0964	4.06E-02	2.90E-01	1.164	1.8–2.3	0.14
Pb	1.0124–1.0429	2.85E-02	8.14E-00	1.803	2.0-6.5	0.6
Cd	0.0991-0.1820	1.70E-03	1.67E-00	2.904	1.8–6-8	0.5
Zn	1.1422-1.1622	4.00E-04	3.00E-04	0.065	8.0-11.0	0.3
Fe	0.6162–0.8354	1.90E-03	9.68E-02	0.442	8.0–18.0	0.8
Cr	1.6730-1.8240	2.28E-02	1.63E-01	2.279	5.0–9-0	0.3

The accumulation factors of the metals in the consumed parts of the plants were less than the values obtained for Fe and Cr. Chromium, with AF values in the range of 1.6730–1.8240, was the most accumulated. Thus, the bio-concentration factor (BCF) values of metals in the food crops showed a trend in the order of Cr > Zn > Ni > Cd > Mn > Pb > Cu \approx Fe. The best accumulators for Cr are okra plants that preferentially concentrate metals in their leaves, the consumable part of the plant.

Source: https://www.sciencedirect.com/science/article/pii/S1319562X15002181