Effects of Nitrogen Dioxide on Biochemical Responses in 41 Garden Plants (2019)

Relative leaf chlorophyll (Chl) a content, Chl b content and carotenoid contents (folds) in different plant functional groups treated without nitrogen dioxide (NO_2) (- NO_2), with 72 h NO_2 stress (+ NO_2) or after 30 d of natural recovery (NR).

	Number of Species	Specific Leaf Area	Relative Chl a Content Relative Chl b Content						t Rel	Relative Carotenoid Content		
Life from	<u></u>		-NO ₂	+NO ₂	NR	-NO ₂	+NO ₂	NR	-N Oa	+NO ₂	NR	
Herb	8	69,216	1	0.43 ±	0.9 ±	1	0.61 ±	0.83	1	0.34 ±	0.66 ± 0.30*	
				0.06**	0.09		0.12**	±		0.17**		
								0.09				
Shrub	23	111,837	1	0.58 ±	0.96 ±	1	0.35 ±	0.9 ±	1	0.48 ±	0.96 ± 0.05	
				0.09**	0.05		0.04**	0.14		0.04**		
Tree	10	129,284	1	0.7 ±	1.1 ±	1	0.88 ±	1.21	1	0.33 ±	0.92 ± 0.03**	
				0.07**	0.06		0.06	± 0.12*		0.03**		
Evergreen	5	215,042	1	$0.9 \pm 0.05*$	1.15 ±	1	0.94 ±	1.25	1	0.92 ± 0.17	1.03 ± 0.04	
					0.07*		0.09	± 0.07* *				
Deciduous	5	17,669	1	0.59 ±	1.07 ±	1	0.84 ±	1.19	1	0.49 ±	0.85 ± 0.01**	
				0.05**	0.07		0.16	± 0.08		0.03		
Broadleaf	39	126,381	1	0.62 ±	0.95 ±	1	0.57 ±	0.94	1	0.47 ±	0.86 ± 0.06**	
				0.08**	0.08		0.14**	± 0.05		0.01		
Needle-like	2	987,404	1	0.31 ±	0.82 ±	1	0.35 ±	0.75	1	0.24 ±	0.51 ± 0.03**	
				0.11**	0.03*		0.04**	± 0.1**		0.02		
Phylogeny	4	400.040		0.00	0.00	4	0.40	0.70	4	0.00	0.0.0.04*	
Gymnospe rm	4	469,349	1	0.39 ± 0.03**	0.92 ± 0.04*	1	0.48 ± 0.04**	0.73 ± 0.18*	1	0.28 ± 0.06**	0.9 ± 0.04*	
Angiosper	37	104,701	1	0.57 ±	0.99 ±	1	0.7 ±	0.93	1	0.48 ±	0.93 ± 0.01*	
m				0.06**	0.08		0.09*	± 0.12		0.04**		
Monocotyl edon	7	68,862	1	0.38 ± 0.07**	0.82 ± 0.07**	1	0.55 ± 0.05**	0.79 ±	1	0.36 ± 0.02**	0.64 ± 0.03**	
								0.09*				
Dicotyledo n	30	113,064	1	0.61 ± 0.02**	1.02 ± 0.1	1	0.73 ± 0.09*	0.96	1	0.52 ± 0.02**	1.01 ± 0.02	
				0.02	011		0.00	0.19		0.02		
Photosynthe	tic pathway											
C4 herb	4	2668	1	0.36 ± 0.03**	0.96 ± 0.08	1	0.58 ± 0.11**	0.9 ± 0.08	1	0.35 ± 0.01**	0.83 ± 0.01**	
C3 herb	4	91,399	1	0.55 ± 0.04**	1.45 ± 0.1**	1	0.54 ± 0.21*	0.7 ± 0.24	1	0.33 ± 0.06**	0.52 ± 0.04**	
All species	41	146,532	1	0.59 ±	0.97 ±	1	0.61 ±	0.96	1	0.46 ±	0.89 ± 0.01**	
				0.03**	0.08		0.12**	± 0.03		0.02**		

The data are based on at least three individual measurements in each plant species. In each functional group, the data in the -NO₂ group is taken as the baseline data, and those in the corresponding +NO₂ and NR groups are presented as the mean \pm standard errors of the folds compared to the corresponding baseline data. One-way analysis of variance after Levene's test was performed for statistical analysis. In case of heterogeneity of variance, nonparametric Kruskal-Wallis one-factor analysis of variance was used. * p < 0.05 and ** p < 0.01 compared to the corresponding -NO₂ group in the same functional group.

Source: https://www.mdpi.com/2223-7747/8/2/45/htm

Effects of Nitrogen Dioxide on Biochemical Responses in 41 Garden Plants (2019)

Relative Ca, Mn, and Zn contents (folds) in different plant functional groups treated without nitrogen dioxide (NO₂) (–NO₂), with 72 h NO₂ stress (+NO₂) or after 30 d of natural recovery (NR).

	Relative Ca Content				Relativ	e Mn Cont	Relative Zn Content				
Life from	-NO ₂	+NO2		NR	-N	O ₂	$+NO_2$		NR	-NO ₂	$+NO_2$
NR											
Herb	1	1.16 ± 0.41	0.94 ± 026*	1	1.57 ± 1.38	0.95 ± 0.60	1	1.08 ± 0.29	1.07	± 0.90*	
Shrub	1	1.07 ± 0.39	1.07 ± 0.36	1	1.24 ± 1.76	1.44 ± 0.91	1	0.95 ± 0.32	0.95	± 0.62**	
Tree	1	1.03 ± 0.42	0.94 ± 0.25*	1	2.80 ± 5.53	0.77 ± 1.03**	1	0.83 ± 0.39**	0.94	± 0.30	
Evergreen	1	1.94 ± 0.54**	1.09 ± 0.24	1	1.32 ± 1.11	0.53 ± 0.46**	1	0.70 ± 0.18**	0.99	± 0.16	
Deciduous	1	0.93 ± 0.20	0.78 ± 0.16**	1	4.27 ± 7.58	1.01 ± 1.36*	1	0.95 ± 0.50	0.89	± 0.39	
Broadleaf	1	1.04 ± 0.35	1.00 ± 0.32	1	1.65 ± 3.19*	1.51 ± 1.91	1	0.96 ± 0.35**	0.98	± 0.64**	
Needle-like	1	1.35 ± 0.85	1.23 ± 0.34	1	2.64 ± 0.09	0.30 ± 0.12	1	0.71 ± 0.12**	0.92	± 0.01	
Gymnosperm	1	1.04 ± 0.66*	1.00 ± 0.34	1	1.79 ± 1.02	0.44 ± 0.32**	1	0.93 ± 0.34	0.91	± 0.20	
Angiosperm	1	1.06 ± 0.35	1.01 ± 0.32	1	1.68 ± 3.27*	1.56 ± 1.95	1	0.95 ± 0.34**	0.98	± 0.65**	
Monocotyledon	1	1.21 ± 0.41	1.00 ± 0.23	1	1.77 ± 1.30	2.57 ± 3.85	1	1.10 ± 0.31	1.00	± 0.95**	
Dicotyledon	1	1.03 ± 0.33	1.01 ± 0.34	1	1.66 ± 3.58*	1.33 ± 1.03	1	0.91 ± 0.34**	0.98	± 0.57**	
Photosynthetic pa											
C4 herb	1	1.46 ± 0.38*	1.08 ± 0.26	1	1.73 ± 1.11	0.84 ± 0.39	1	1.06 ± 0.40	1.24	± 1.20*	
C3 herb	1	0.85 ± 0.08**	0.80 ± 0.16**	1	1.46 ± 1.52	1.07 ± 0.76	1	1.12 ± 0.15	0.90	± 0.43	
All species	1	1.06 ± 0.39	1.01 ±	1	1.69 ±	1.38 ±	1	0.95 ±	0.98	± 0.62**	

The data are based on at least three individual measurements in each plant species. In each functional group, the data in the $-NO_2$ group is taken as the baseline data, and those in the corresponding $+NO_2$ and NR groups are presented as the mean \pm standard errors of the folds compared to the corresponding baseline data. One-way analysis of variance after Levene's test was performed for statistical analysis. In case of heterogeneity of variance, nonparametric Kruskal-Wallis one-factor analysis of variance was used. * p < 0.05 and ** p < 0.01 compared to the corresponding -NO₂ group in the same functional group.

Source: https://www.mdpi.com/2223-7747/8/2/45/htm

Nitrogen Management Affects Nitrous Oxide Emissions under Varying Cotton Irrigation Systems in the Desert Southwest, USA (2018)

Table 1. Nitrous oxide emissions as affected by N management in overhead sprinkler–irrigated 'DP 1044 RR F' cotton, Maricopa, AZ, 2014 and 2015.

Nitrogen treatment	Fertilizer source	Fertilizer	rate	Seasonal N ₂	O flux	N₂O emission factor	
		2014	2015	2014	201 5	2014	2015
		kg N ha ^{−1}		gN₂O-N ha⁻¹ 91d⁻¹	gN₂O-N ha⁻¹ 113d⁻ ¹	q	%
1 Zoro N		0	0	75 h+	295.0		
2 Soil tost-based		170	121		1620	-	_ 1_01
N‡	OANS	175	151	1125 a	b	0.50 a	a.
3. 1.3*soil test-	UAN	233	170	1240 a	2830	0.53 a	1.05
based N‡					а		а
4. Soil test-based N‡	UAN + Agrotain Plus	179	131	269 b	856 bc	0.15 a	0.44 a
5. Reflectance- based N-1	UAN	90	66	1013 ab	783 c	1.11 a	0.77 a
6. Reflectance- based N-2#	UAN	116	85	705 ab	1099 bc	0.60 a	0.95 a
7. Reflectance- based N-1	UAN + Agrotain Plus	90	66	646 ab	761 c	0.71 a	0.72 a
8. Reflectance-	UAN +	116	85	532 b	935	0.45 a	0.72
based N-2#	Agrotain Plus				bc		а
SE				269	332	0.3	0.4

† Means in a column followed by a similar letter are not statistically different at P = 0.05.

‡ Based on lint yield goal of 2240 kg ha–1 and a 224 kg N ha–1 N requirement minus 0- to 90-cm soil NO3–N and estimated irrigation input of 22 kg N ha–1 (estimated 100-cm irrigation of 2 mg L–1 NO3–N water). § UAN, urea ammonium nitrate.

First split equals 50% treatment 2; second and third splits based on normalized difference vegetation index (NDVI) relative to treatment 2.

First split equals 50% treatment 2, second and third splits based on NDVI relative to treatment 3.

Source:https://www.researchgate.net/publication/322459549_Nitrogen_Management_Affects_Nitrous_Oxide_E missions_under_Varying_Cotton_Irrigation_Systems_in_the_Desert_Southwest_USA

Nitrous Oxide Emissions from Turfgrass Receiving Different Irrigation Amounts and Nitrogen Fertilizer Forms (2018)

Table 1: Analysis of fertilizer main effect, irrigation main effect, and fertilizer \checkmark irrigation interaction on cumulative N₂O emissions during the summer periods (June–August) in Year 1 (2015), Year 2 (2016), and both summers combined.

		(Cumulative summer N ₂ O emissions						
Source of variation			Year 1 Year 2			Total			
				· N ₂	O-N kg ha ^{−1}				
Fertilizer									
Ure	a		1.82a† 1.77a† 3.59a†		3.59a†				
Pol	ymer-coated urea (PCU)		1.18b		1.35b	2.53b			
Unf	ertilized (UF)		0.974c		1.31b	2.28c			
Irriga	tion‡								
Medium			1.36a§		1.53a¶	2.88a#			
Low			1.29b		1.42 b	2.71b			
Fertilizer ' irrigation									
Urea ´ medium			1.84		1.84	3.68a§			
Urea ´ low			1.80		1.70	3.50b			
PCU ´ medium			1.26		1.42	2.68c			
PCU ´ low			1.10		1.27	2.37d			
UF	´ medium		0.975		1.32	2.29d			
UF	í low		0.973	1.29 2.27d		2.27d			
			ANOVA						
Source				p-value††					
Fertilizer			<0.0001	<0.0001		<0.0001			
Irrigation			0.0289		0.0027	0.0006			
Fertil	izer x Irrigation		0.0901		0.2046	0.0437			

† Within fertilizer main effect, means in column with different letters are significantly different according Fisher's LSD (P £ 0.0001).

 \ddagger Medium irrigation level was at 72% reference evapotranspiration (ET0) replacement in 2014, at 68% ET0 replacement from 1 June to 19 July in 2015, and then at 66% ET0 replacement from 20 July to 1 September in 2015 and entire summer period in 2016. The low irrigation level was at 54% ET0 replacement in 2014, at 45% ET0 replacement from 1 June to 19 July in 2015, and then at 33% ET0 replacement from 20 July to 1 September in 2015 and entire summer period in 2016. Within the source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pounds 0.05).

¶ Within the source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.01).

Within the source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.001).

†† Bolded p-values are significant at either the 0.05, 0.01, or 0.001 probability level.

Nitrous Oxide Emissions from Turfgrass Receiving Different Irrigation Amounts and Nitrogen Fertilizer Forms (2018)

Table 1:Analysis of fertilizer main effect, irrigation main effect, and fertilizer $\dot{}$ irrigation interaction on 2-yr total cumulative N₂O emissions for the summer periods (June– August), offseason period (September–May), and the combined total of the entire 2-yr period.

	Cumulative N ₂ O emissions						
Source of variation	Total summer	Total offseason	Combined total for entit				
			period				
	N	ON_2 kg ha ⁻¹					
Fertilizer							
Urea	3.59a†	2.03a‡	5.62a‡				
Polymer-coated urea							
(PCU)	2.53b	1.97a	4.50b				
Unfertilized (UF)	2.28c	1.78b	4.06c				
Irrigation							
Medium	2.88a§	1.89	4.77				
Low	2.71b	1.97	4.68				
Fertilizer ´ irrigation							
Urea ´ medium	3.68a¶	1.95	5.63				
Urea ´ Iow	3.50b	2.11	5.61				
PCU ´ medium	2.68c	1.96	4.64				
PCU ´ low	2.37d	1.99	4.36				
UF ´ medium	2.29d	1.75	4.04				
UF´low	2.27d	1.80	4.07				
	,	ANOVA					
Source		p-value#					
Fertilizer	<0.0001	0.0011	<0.0001				
Irrigation	0.0006	0.1404	0.2180				
Fertilizer x Irrigation	0.0437	0.5550	0.2093				

 \dagger Within a source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P £ 0.0001).

 \ddagger Within a source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.01).

§ Within a source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.001).

¶ Within a source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.05).

Bolded p-values are significant at either the 0.05, 0.01, or 0.001 probability level.

Source:

https://www.researchgate.net/publication/325075860_Nitrous_Oxide_Emissions_from_Turfgrass_Receiving_Di fferent_Irrigation_Amounts_and_Nitrogen_Fertilizer_Forms

Management of pig manure to mitigate NO and yield-scaled N₂O emissions in an irrigated Mediterranean crop (2017)

Table 1: Cumulative N₂O-N emissions over the different periods of field experiment and total cumulative NO-N, CH₄-C and, CO₂-C fluxes in the different fertilizer (C, control, U, urea, COM, compost, LFPS, liquid fraction of pig slurry, LFPSI, liquid fraction of pig slurry + DMPP) and irrigation (S, sprinkler, D, drip) treatments.

Effect	N ₂ O cumula N ₂ O-N ha ¹	ative emissi)	on (g	Total N ₂ O-N	NO cumulative emission	CH ₄ cumulative emission	CO ₂ cumulative emission
	Period I	Period II	Period III	$(g N_2O-$ N ha ¹ y ¹)	$(kg NO-N ha^{1} y^{1})$	$(g CH_4-C ha^1 y^1)$	$(Mg CO_2$ -C ha ¹ y ¹)
Irrigation x fertilizer	P = 0.200	P = 0.042	P = 0.238	P = 0.026	P = 0.03	P = 0.652	P = 0.32
S.E.	13.7	80.8	31.0	91.1	0.3	102.6	0.1
Irrigation	P = 0.867	P = 0.000	P = 0.032	P = 0.000	P = 0.000	P = 0.000	P = 0.000
S	69.5	517.7 b	123.7 b	710.8 b	2.4 a	358.3 a	0.69 b
D	53.9	130.6 a	65.5 a	261.2 a	3.8 b	96.0 b	0.25 a
S.E.	6.2	36.1	13.8	40.7	0.1	45.9	0.03
Fertilizer	P = 0.000	P = 0.001	P = 0.157	P = 0.000	P = 0.000	P = 0.070	P = 0.006
С	21.5 a	53.3 a	60.9	138.6 a	2.4 a	163.8 ab	0.44 a
U	20.6 a	634.1 c	126.6	781.9 c	3.1 bc	332.1 a	0.43 a
СОМ	122.7 c	421.1 bc	113.9	664.7 bc	3.5 c	112.1 b	0.61 b
LFPS	95.3 c	327.2 bc	104.7	529.1 b	3.9 c	163.1 ab	0.37 a
LFPSI	48.2 b	198.7 ab	66.8	315.9 a	2.6 ab	365.1 a	0.50 a
S.E.	9.7	57.1	21.9	64.4	0.2	72.5	0.04

Different letters within columns indicate significant differences by applying the Tukey's honest significance test at P < 0.05.

Standard Error (S.E.) is given for each effect.

The variables N_2O (Period II), total N_2O , NO and CO_2 were log-transformed before the ANOVA.

Source: https://www.sciencedirect.com/science/article/pii/S016788091630473X