Nitrogen Management Affects Nitrous Oxide Emissions under Varying Cotton Irrigation Systems in the Desert Southwest, USA (2018)

Table 1. Nitrous oxide emissions as affected by N management in overhead sprinkler–irrigated 'DP 1044 RR F' cotton, Maricopa, AZ, 2014 and 2015.

Nitrogen treatment	Fertilize r source	Fertilizer rate		Seasonal N ₂	O flux	N₂O emission factor	
		2014	2015	2014	201 5	2014	2015
		kg N ha ^{−1}		gN₂O-N ha ⁻¹ 91d ⁻¹	gN ₂ O-N ha ⁻¹ 113d 1	%	
1. Zero-N		0	0	75 b†	285 c	_	_
2. Soil test-based N‡	UAN§	179	131	1123 a	1620 b	0.58 a	1.01 a
3. 1.3*soil test- based N‡	UAN	233	170	1240 a	2830 a	0.53 a	1.05 a
4. Soil test-based N‡	UAN + Agrotain Plus	179	131	269 b	856 bc	0.15 a	0.44 a
5. Reflectance- based N-1	UAN	90	66	1013 ab	783 c	1.11 a	0.77 a
6. Reflectance- based N-2#	UAN	116	85	705 ab	1099 bc	0.60 a	0.95 a
7. Reflectance- based N-1	UAN + Agrotain Plus	90	66	646 ab	761 c	0.71 a	0.72 a
8. Reflectance- based N-2#	UAN + Agrotain Plus	116	85	532 b	935 bc	0.45 a	0.72 a
SE				269	332	0.3	0.4

† Means in a column followed by a similar letter are not statistically different at P = 0.05.

* Based on lint yield goal of 2240 kg ha-1 and a 224 kg N ha-1 N requirement minus 0- to 90-cm soil NO3–N and estimated irrigation input of 22 kg N ha-1 (estimated 100-cm irrigation of 2 mg L-1 NO3–N water). UAN, urea ammonium nitrate.

First split equals 50% treatment 2; second and third splits based on normalized difference vegetation index (NDVI) relative to treatment 2.

First split equals 50% treatment 2, second and third splits based on NDVI relative to treatment 3.

Source:https://www.researchgate.net/publication/322459549_Nitrogen_Management_Affects_Nitrous_Oxide_E missions_under_Varying_Cotton_Irrigation_Systems_in_the_Desert_Southwest_USA

Nitrous Oxide Emissions from Turfgrass Receiving Different Irrigation Amounts and Nitrogen Fertilizer Forms (2018)

Table 1: Analysis of fertilizer main effect, irrigation main effect, and fertilizer ' irrigation interaction on cumulative N2O emissions during the summer periods (June–August) in Year 1 (2015), Year 2 (2016), and both summers combined.

	Cumulative summer N ₂ O emissions						
Source of variation	Year 1	Ye	ear 2	Total			
		— N ₂	O-N kg ha ^{−1}				
Fertilizer							
Urea	1.82a†		1.77a†	3.59a†			
Polymer-coated urea (PCU)	1.18b		1.35b	2.53b			
Unfertilized (UF)	0.974c		1.31b	2.28c			
Irrigation‡							
Medium	1.36a§	1.53a¶ 2.88a#		2.88a#			
Low	1.29b		1.42 b	2.71b			
Fertilizer ´ irrigation							
Urea ´ medium	1.84		1.84	3.68a§			
Urea ´ low	1.80	1.70		3.50b			
PCU ´ medium	1.26		1.42	2.68c			
PCU ´ low	1.10	1.27 2.37d		2.37d			
UF ´ medium	0.975		1.32	2.29d			
UF ´ low	0.973		1.29	2.27d			
	ANOVA						
Source		р	-value††				
Fertilizer	<0.0001	_	<0.0001	<0.0001			
Irrigation	0.0289		0.0027	0.0006			
Fertilizer x Irrigation	0.0901		0.2046	0.0437			
<u> </u>							

† Within fertilizer main effect, means in column with different letters are significantly different according Fisher's LSD (P £ 0.0001).

‡ Medium irrigation level was at 72% reference evapotranspiration (ET0) replacement in 2014, at 68% ET0 replacement from 1 June to 19 July in 2015, and then at 66% ET0 replacement from 20 July to 1 September in 2015 and entire summer period in 2016. The low irrigation level was at 54% ET0 replacement in 2014, at 45% ET0 replacement from 1 June to 19 July in 2015, and then at 33% ET0 replacement from 20 July to 1 September in 2015 and entire summer period in 2016. Within the source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.05).

¶ Within the source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.01).

Within the source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pounds 0.001).

†† Bolded p-values are significant at either the 0.05, 0.01, or 0.001 probability level.

Nitrous Oxide Emissions from Turfgrass Receiving Different Irrigation Amounts and Nitrogen Fertilizer Forms (2018)

Table 1:Analysis of fertilizer main effect, irrigation main effect, and fertilizer ' irrigation interaction on 2-yr total cumulative N₂O emissions for the summer periods (June– August), offseason period (September–May), and the combined total of the entire 2-yr period.

	Cumulative N ₂ O emissions					
Source of variation	Total summer	Total offseason	Combined total for entir period			
	N	ON_2 kg ha ⁻¹				
Fertilizer						
Urea	3.59a†	2.03a‡	5.62a‡			
Polymer-coated urea (PCU)	2.53b	1.97a	4.50b			
Unfertilized (UF)	2.28c	1.78b	4.06c			
Irrigation						
Medium	2.88a§	1.89	4.77			
Low	2.71b	1.97	4.68			
Fertilizer ´ irrigation						
Urea ´ medium	3.68a¶	1.95	5.63			
Urea ´ low	3.50b	2.11	5.61			
PCU ´ medium	2.68c	1.96	4.64			
PCU ´ low	2.37d	1.99	4.36			
UF ´ medium	2.29d	1.75	4.04			
UF Í low	2.27d	1.80	4.07			
		ANOVA				
Source	p-value#					
Fertilizer	<0.0001	0.0011	<0.0001			
Irrigation	0.0006	0.1404	0.2180			
Fertilizer x Irrigation	0.0437	0.5550	0.2093			

 \dagger Within a source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.0001).

 \ddagger Within a source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.01).

§ Within a source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.001).

¶ Within a source of variation, means in columns with different letters are significantly different according to Fisher's LSD (P \pm 0.05).

Bolded p-values are significant at either the 0.05, 0.01, or 0.001 probability level.

Management of pig manure to mitigate NO and yield-scaled N_2O emissions in an irrigated Mediterranean crop (2017)

Table 1: Cumulative N_2O -N emissions over the different periods of field experiment and total cumulative NO-N, CH₄-C and, CO₂-C fluxes in the different fertilizer (C, control, U, urea, COM, compost, LFPS, liquid fraction of pig slurry, LFPSI, liquid fraction of pig slurry + DMPP) and irrigation (S, sprinkler, D, drip) treatments.

Effect	N_2O cumulative emission (g N_2O -N ha 1)			Total N ₂ O-N	NO cumulative emission	CH ₄ cumulative emission	CO ₂ cumulative emission
	Period I	Period II	Period III	$(g N_2O-$ N ha ¹ y ¹)	$(kg NO-N ha^{1} y^{1})$	$(g CH_4-C ha^1 y^1)$	$(Mg CO_2$ -C ha ¹ y ¹)
Irrigation x fertilizer	P = 0.200	P = 0.042	P = 0.238	P = 0.026	P = 0.03	P = 0.652	P = 0.32
S.E.	13.7	80.8	31.0	91.1	0.3	102.6	0.1
Irrigation	P = 0.867	P = 0.000	P = 0.032	P = 0.000	P = 0.000	P = 0.000	P = 0.000
S	69.5	517.7 b	123.7 b	710.8 b	2.4 a	358.3 a	0.69 b
D	53.9	130.6 a	65.5 a	261.2 a	3.8 b	96.0 b	0.25 a
S.E.	6.2	36.1	13.8	40.7	0.1	45.9	0.03
Fertilizer	P = 0.000	P = 0.001	P = 0.157	P = 0.000	P = 0.000	P = 0.070	P = 0.006
С	21.5 a	53.3 a	60.9	138.6 a	2.4 a	163.8 ab	0.44 a
U	20.6 a	634.1 c	126.6	781.9 c	3.1 bc	332.1 a	0.43 a
СОМ	122.7 c	421.1 bc	113.9	664.7 bc	3.5 c	112.1 b	0.61 b
LFPS	95.3 c	327.2 bc	104.7	529.1 b	3.9 c	163.1 ab	0.37 a
LFPSI	48.2 b	198.7 ab	66.8	315.9 a	2.6 ab	365.1 a	0.50 a
S.E.	9.7	57.1	21.9	64.4	0.2	72.5	0.04

Different letters within columns indicate significant differences by applying the Tukey's honest significance test at P < 0.05.

Standard Error (S.E.) is given for each effect.

The variables N_2O (Period II), total N_2O , NO and CO_2 were log-transformed before the ANOVA.

Source: https://www.sciencedirect.com/science/article/pii/S016788091630473X